IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p160-d1559355.html
   My bibliography  Save this article

Integrated Stochastic Approach for Instantaneous Energy Performance Analysis of Thermal Energy Systems

Author

Listed:
  • Anthony Kpegele Le-ol

    (Department of Mechanical Engineering, Rivers State University, Port Harcourt P.M.B. 5080, Nigeria)

  • Sidum Adumene

    (Department of Marine Engineering, Rivers State University, Port Harcourt P.M.B. 5080, Nigeria)

  • Duabari Silas Aziaka

    (Center of Power & Propulsion, Cranfield University, Cranfield MK43 0AL, UK
    Center for Multidisciplinary Research & Innovation (CEMRI), Abuja 904101, Nigeria)

  • Mohammad Yazdi

    (Faculty of Science & Engineering, Macquarie University, Sydney 2113, Australia)

  • Javad Mohammadpour

    (Faculty of Science & Engineering, Macquarie University, Sydney 2113, Australia)

Abstract

To ascertain energy availability and system performance, a comprehensive understanding of the systems’ degradation profile and impact on overall plant reliability is imperative. The current study presents an integrated Failure Mode and Effects Analysis (FMEA)–Markovian algorithm for reliability-based instantaneous energy performance prediction for thermal energy systems. The FMEA methodology is utilized to identify and categorize the various failure modes of the gas turbines, establishing a reliability pattern that informs overall system performance. Meanwhile, the Markovian algorithm discretizes the system into states based on its operational energy performance envelope. The algorithm predicts instantaneous energy performance according to upper and lower bounds criteria. This integrated methodology has been subjected to testing in three case studies, yielding results that demonstrate improved reliability and instantaneous energy performance prediction during system degradation. It was observed that after 14 years of operation, the likelihood of major failures increases to 79.6%, 88.7%, and 82.8%, with corresponding decreases in system performance reliability of 10.1%, 4.5%, and 7.8% for the Afam, Ibom, and Sapele gas turbine plants, respectively. Furthermore, the percentage of instantaneous mean power performance relative to the rated capacity is 37.9%, 35.1%, and 46.3% for the three gas turbine plants. These results indicate that the Sapele thermal power plant performs better relative to its rated capacity. Overall, this integrated methodology serves as a valuable tool for monitoring gas turbine engine health and predicting energy performance under varying operating conditions.

Suggested Citation

  • Anthony Kpegele Le-ol & Sidum Adumene & Duabari Silas Aziaka & Mohammad Yazdi & Javad Mohammadpour, 2025. "Integrated Stochastic Approach for Instantaneous Energy Performance Analysis of Thermal Energy Systems," Energies, MDPI, vol. 18(1), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:160-:d:1559355
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wojcik, Jacek D. & Wang, Jihong, 2018. "Feasibility study of Combined Cycle Gas Turbine (CCGT) power plant integration with Adiabatic Compressed Air Energy Storage (ACAES)," Applied Energy, Elsevier, vol. 221(C), pages 477-489.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    2. Pawlak-Kruczek, Halina & Niedźwiecki, Łukasz & Ostrycharczyk, Michał & Czerep, Michał & Plutecki, Zbigniew, 2019. "Potential and methods for increasing the flexibility and efficiency of the lignite fired power unit, using integrated lignite drying," Energy, Elsevier, vol. 181(C), pages 1142-1151.
    3. Alami Merrouni, Ahmed & Conceição, Ricardo & Mouaky, Ammar & Silva, Hugo Gonçalves & Ghennioui, Abdellatif, 2020. "CSP performance and yield analysis including soiling measurements for Morocco and Portugal," Renewable Energy, Elsevier, vol. 162(C), pages 1777-1792.
    4. Glensk, Barbara & Madlener, Reinhard, 2019. "The value of enhanced flexibility of gas-fired power plants: A real options analysis," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    6. Hou, Guolian & Fan, Yuzhen & Wang, Junjie, 2024. "Application of a novel dynamic recurrent fuzzy neural network with rule self-adaptation based on chaotic quantum pigeon-inspired optimization in modeling for gas turbine," Energy, Elsevier, vol. 290(C).
    7. Rossi, Iacopo & Traverso, Alberto & Tucker, David, 2019. "SOFC/Gas Turbine Hybrid System: A simplified framework for dynamic simulation," Applied Energy, Elsevier, vol. 238(C), pages 1543-1550.
    8. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    9. Pang, Simian & Zheng, Zixuan & Xiao, Xianyong & Huang, Chunjun & Zhang, Shu & Li, Jie & Zong, Yi & You, Shi, 2022. "Collaborative power tracking method of diversified thermal loads for optimal demand response: A MILP-Based decomposition algorithm," Applied Energy, Elsevier, vol. 327(C).
    10. Obara, Shin'ya, 2023. "Energy storage device based on a hybrid system of a CO2 heat pump cycle and a CO2 hydrate heat cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
    12. Xiao, Runke & Yang, Cheng & Qi, Hanjie & Ma, Xiaoqian, 2023. "Synergetic performance of gas turbine combined cycle unit with inlet cooled by quasi-isobaric ACAES exhaust," Applied Energy, Elsevier, vol. 352(C).
    13. Pavitra Senthamilselvan Sengalani & Md Emdadul Haque & Manali S. Zantye & Akhilesh Gandhi & Mengdi Li & M. M. Faruque Hasan & Debangsu Bhattacharyya, 2023. "Techno-Economic Analysis and Optimization of a Compressed-Air Energy Storage System Integrated with a Natural Gas Combined-Cycle Plant," Energies, MDPI, vol. 16(13), pages 1-23, June.
    14. Sun, Shijun & Wang, Songtao & Chen, Shaowen, 2020. "The influence of diversified forward sweep heights on operating range and performance of an ultra-high-load low-reaction transonic compressor rotor," Energy, Elsevier, vol. 194(C).
    15. Yang, Tingting & Liu, Ziyuan & Zeng, Deliang & Zhu, Yansong, 2023. "Simulation and evaluation of flexible enhancement of thermal power unit coupled with flywheel energy storage array," Energy, Elsevier, vol. 281(C).
    16. Ochmann, J. & Rusin, K. & Bartela, Ł., 2023. "Comprehensive analytical model of energy and exergy performance of the thermal energy storage," Energy, Elsevier, vol. 283(C).
    17. He, Xin & Li, ChengChen & Wang, Huanran, 2022. "Thermodynamics analysis of a combined cooling, heating and power system integrating compressed air energy storage and gas-steam combined cycle," Energy, Elsevier, vol. 260(C).
    18. Gao, Xian & Knueven, Bernard & Siirola, John D. & Miller, David C. & Dowling, Alexander W., 2022. "Multiscale simulation of integrated energy system and electricity market interactions," Applied Energy, Elsevier, vol. 316(C).
    19. Kim, Min Jae & Kim, Tong Seop, 2019. "Integration of compressed air energy storage and gas turbine to improve the ramp rate," Applied Energy, Elsevier, vol. 247(C), pages 363-373.
    20. Kyle L. Buchheit & Alexander A. Noring & Arun K. S. Iyengar & Gregory A. Hackett, 2023. "Techno-Economic Analysis of a Thermally Integrated Solid Oxide Fuel Cell and Compressed Air Energy Storage Hybrid System," Energies, MDPI, vol. 17(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:160-:d:1559355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.