IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4297-d1465698.html
   My bibliography  Save this article

Prospective Life Cycle Assessment of Hydrogen: A Systematic Review of Methodological Choices

Author

Listed:
  • Gustavo Ezequiel Martinez

    (Flemish Institute for Technological Research (VITO), EnergyVille, Thor Park 8310, 3600 Genk, Belgium)

  • Roel Degens

    (Flemish Institute for Technological Research (VITO), EnergyVille, Thor Park 8310, 3600 Genk, Belgium)

  • Gabriela Espadas-Aldana

    (Flemish Institute for Technological Research (VITO), EnergyVille, Thor Park 8310, 3600 Genk, Belgium)

  • Daniele Costa

    (Flemish Institute for Technological Research (VITO), EnergyVille, Thor Park 8310, 3600 Genk, Belgium)

  • Giuseppe Cardellini

    (Flemish Institute for Technological Research (VITO), EnergyVille, Thor Park 8310, 3600 Genk, Belgium)

Abstract

This systematic review examines methodological choices in assessing hydrogen production and utilisation technologies using prospective life cycle assessments (LCA) between 2010 and 2022, following PRISMA guidelines. The review analysed 32 peer-reviewed articles identified through Scopus, Web of Science, and BASE. The study reveals a significant gap in the consistent application of prospective LCA methodologies for emerging hydrogen technologies. Most studies employed attributional approaches, often lacking prospective elements in life cycle inventory (LCI) modelling. Although some initiatives to integrate forward-looking components were noted, there was often lack of clarity in defining LCA objectives, technology readiness level (TRL), and upscaling methods. Of the 22 studies that focused on emerging hydrogen technologies, few detailed upscaling methods. Additionally, the review identified common issues, such as the limited use of prospective life cycle impact assessment (LCIA) methods, inadequate data quality evaluation, and insufficient sensitivity and uncertainty analysis. These findings highlight the substantial gaps in modelling low-TRL hydrogen technologies and the need for more robust, comprehensive approaches to assess uncertainties. The review also identified common practices and areas for improvement to enhance the reliability and relevance of hydrogen technology environmental assessments.

Suggested Citation

  • Gustavo Ezequiel Martinez & Roel Degens & Gabriela Espadas-Aldana & Daniele Costa & Giuseppe Cardellini, 2024. "Prospective Life Cycle Assessment of Hydrogen: A Systematic Review of Methodological Choices," Energies, MDPI, vol. 17(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4297-:d:1465698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Schaubroeck & Simon Schaubroeck & Reinout Heijungs & Alessandra Zamagni & Miguel Brandão & Enrico Benetto, 2021. "Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-47, July.
    2. Tsiklios, C. & Hermesmann, M. & Müller, T.E., 2022. "Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations," Applied Energy, Elsevier, vol. 327(C).
    3. Rickard Arvidsson & Anne‐Marie Tillman & Björn A. Sandén & Matty Janssen & Anders Nordelöf & Duncan Kushnir & Sverker Molander, 2018. "Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1286-1294, December.
    4. Ritchey, Tom, 2018. "General morphological analysis as a basic scientific modelling method," Technological Forecasting and Social Change, Elsevier, vol. 126(C), pages 81-91.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arianne Provost‐Savard & Guillaume Majeau‐Bettez, 2024. "Substitution modeling can coherently be used in attributional life cycle assessments," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 410-425, June.
    2. Mélanie Douziech & Romain Besseau & Raphaël Jolivet & Bianka Shoai‐Tehrani & Jean‐Yves Bourmaud & Guillaume Busato & Mathilde Gresset‐Bourgeois & Paula Pérez‐López, 2024. "Life cycle assessment of prospective trajectories: A parametric approach for tailor‐made inventories and its computational implementation," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 25-40, February.
    3. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Anna Furberg & Rickard Arvidsson & Sverker Molander, 2022. "A practice‐based framework for defining functional units in comparative life cycle assessments of materials," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 718-730, June.
    5. Carlos Pablo Sigüenza & Bernhard Steubing & Arnold Tukker & Glenn A. Aguilar‐Hernández, 2021. "The environmental and material implications of circular transitions: A diffusion and product‐life‐cycle‐based modeling framework," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 563-579, June.
    6. Kemp-Benedict, Eric & Carlsen, Henrik & Kartha, Sivan, 2019. "Large-scale scenarios as ‘boundary conditions’: A cross-impact balance simulated annealing (CIBSA) approach," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 55-63.
    7. Nils Thonemann & Anna Schulte & Daniel Maga, 2020. "How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance," Sustainability, MDPI, vol. 12(3), pages 1-23, February.
    8. Kjersti Wergeland Krakhella & Marjorie Morales & Robert Bock & Frode Seland & Odne Stokke Burheim & Kristian Etienne Einarsrud, 2020. "Electrodialytic Energy Storage System: Permselectivity, Stack Measurements and Life-Cycle Analysis," Energies, MDPI, vol. 13(5), pages 1-26, March.
    9. Nariê Rinke Dias de Souza & Alexandre Souza & Mateus Ferreira Chagas & Thayse Aparecida Dourado Hernandes & Otávio Cavalett, 2022. "Addressing the contributions of electricity from biomass in Brazil in the context of the Sustainable Development Goals using life cycle assessment methods," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 980-995, June.
    10. Sanna Wickerts & Rickard Arvidsson & Anders Nordelöf & Magdalena Svanström & Patrik Johansson, 2024. "Prospective life cycle assessment of sodium‐ion batteries made from abundant elements," Journal of Industrial Ecology, Yale University, vol. 28(1), pages 116-129, February.
    11. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.
    12. Pereverza, Kateryna & Pasichnyi, Oleksii & Kordas, Olga, 2019. "Modular participatory backcasting: A unifying framework for strategic planning in the heating sector," Energy Policy, Elsevier, vol. 124(C), pages 123-134.
    13. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    14. Karla G. Morrissey & Leah English & Greg Thoma & Jennie Popp, 2022. "Prospective Life Cycle Assessment and Cost Analysis of Novel Electrochemical Struvite Recovery in a U.S. Wastewater Treatment Plant," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    15. Gustafsson, Marcus & Cordova, Stephanie S. & Svensson, Niclas & Eklund, Mats, 2024. "Climate performance of liquefied biomethane with carbon dioxide utilization or storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Johanna Olofsson, 2021. "Time-Dependent Climate Impact of Utilizing Residual Biomass for Biofuels—The Combined Influence of Modelling Choices and Climate Impact Metrics," Energies, MDPI, vol. 14(14), pages 1-17, July.
    17. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.
    18. Alper Bayram & Antonino Marvuglia & Maria Myridinas & Marta Porcel, 2022. "Increasing Biowaste and Manure in Biogas Feedstock Composition in Luxembourg: Insights from an Agent-Based Model," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    19. Karlsson, Ida & Rootzén, Johan & Johnsson, Filip, 2020. "Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. Sacchi, R. & Terlouw, T. & Siala, K. & Dirnaichner, A. & Bauer, C. & Cox, B. & Mutel, C. & Daioglou, V. & Luderer, G., 2022. "PRospective EnvironMental Impact asSEment (premise): A streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4297-:d:1465698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.