IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2139-d1386571.html
   My bibliography  Save this article

Techno-Economic Evaluation on Solar-Assisted Post-Combustion CO 2 Capture in Hollow Fiber Membrane Contactors

Author

Listed:
  • Junkun Mu

    (School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
    Shandong Institute of Mechanical Design and Research, Jinan 250031, China)

  • Jinpeng Bi

    (School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
    Shandong Institute of Mechanical Design and Research, Jinan 250031, China)

  • Yuexia Lv

    (School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
    Shandong Institute of Mechanical Design and Research, Jinan 250031, China)

  • Yancai Su

    (School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
    Shandong Institute of Mechanical Design and Research, Jinan 250031, China)

  • Wei Zhao

    (School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
    Shandong Institute of Mechanical Design and Research, Jinan 250031, China)

  • Hui Zhang

    (School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
    Shandong Institute of Mechanical Design and Research, Jinan 250031, China)

  • Tingting Du

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China
    Shenzhen Research Institute, Shandong University, Shenzhen 518057, China)

  • Fuzhao Li

    (School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
    Shandong Institute of Mechanical Design and Research, Jinan 250031, China)

  • Hongyang Zhou

    (School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
    Shandong Institute of Mechanical Design and Research, Jinan 250031, China)

Abstract

In this study, a novel system which integrates solar thermal energy with membrane gas absorption technology is proposed to capture CO 2 from a 580 MWe pulverized coal power plant. Technical feasibility and economic evaluation are carried out on the proposed system in three cities with different solar resources in China. Research results show that the output capacity and net efficiency of the SOL-HFMC power plant are significantly higher than those of the reference power plant regardless of whether a TES system is applied or not. In addition, the CEI of the SOL-HFMC power plant with the TES system is 4.36 kg CO 2 /MWh, 4.45 kg CO 2 /MWh and 4.66 kg CO 2 /MWh lower than that of the reference power plant. The prices of the membrane, vacuum tube collector and phase change material should be reduced to achieve lower LCOE and COR values. Specifically for the SOL-HFMC power plant with the TES system, the corresponding vacuum tube collector price shall be lower than 25.70 $/m 2 for Jinan, 95.20 $/m 2 for Xining, and 128.70 $/m 2 for Lhasa, respectively. To be more competitive than a solar-assisted ammonia-based post-combustion CO 2 capture power plant, the membrane price in Jinan, Xining and Lhasa shall be reduced to 0.012 $/m, 0.015 $/m and 0.016 $/m for the sake of LCOE, and 0.03 $/m, 0.033 $/m and 0.034 $/m for the sake of COR, respectively.

Suggested Citation

  • Junkun Mu & Jinpeng Bi & Yuexia Lv & Yancai Su & Wei Zhao & Hui Zhang & Tingting Du & Fuzhao Li & Hongyang Zhou, 2024. "Techno-Economic Evaluation on Solar-Assisted Post-Combustion CO 2 Capture in Hollow Fiber Membrane Contactors," Energies, MDPI, vol. 17(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2139-:d:1386571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mokhtar, Marwan & Ali, Muhammad Tauha & Khalilpour, Rajab & Abbas, Ali & Shah, Nilay & Hajaj, Ahmed Al & Armstrong, Peter & Chiesa, Matteo & Sgouridis, Sgouris, 2012. "Solar-assisted Post-combustion Carbon Capture feasibility study," Applied Energy, Elsevier, vol. 92(C), pages 668-676.
    2. Lv, Yuexia & Yu, Xinhai & Tu, Shan-Tung & Yan, Jinyue & Dahlquist, Erik, 2012. "Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor," Applied Energy, Elsevier, vol. 97(C), pages 283-288.
    3. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    4. Goto, Kazuya & Yogo, Katsunori & Higashii, Takayuki, 2013. "A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture," Applied Energy, Elsevier, vol. 111(C), pages 710-720.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yawen & Gao, Lin & He, Song, 2023. "Analysis of the mechanism of energy consumption for CO2 capture in a power system," Energy, Elsevier, vol. 262(PA).
    2. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    3. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    4. Liu, Fei & Fang, Mengxiang & Dong, Wenfeng & Wang, Tao & Xia, Zhixiang & Wang, Qinhui & Luo, Zhongyang, 2019. "Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation," Applied Energy, Elsevier, vol. 233, pages 468-477.
    5. Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
    6. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
    7. Wang, Dandan & Li, Sheng & Liu, Feng & Gao, Lin & Sui, Jun, 2018. "Post combustion CO2 capture in power plant using low temperature steam upgraded by double absorption heat transformer," Applied Energy, Elsevier, vol. 227(C), pages 603-612.
    8. Ganapathy, H. & Shooshtari, A. & Dessiatoun, S. & Alshehhi, M. & Ohadi, M., 2014. "Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor," Applied Energy, Elsevier, vol. 119(C), pages 43-56.
    9. Wang, Tao & Yu, Wei & Le Moullec, Yann & Liu, Fei & Xiong, Yili & He, Hui & Lu, Jiahui & Hsu, Emily & Fang, Mengxiang & Luo, Zhongyang, 2017. "Solvent regeneration by novel direct non-aqueous gas stripping process for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 205(C), pages 23-32.
    10. Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
    11. Zhang, Weidong & Jin, Xianhang & Tu, Weiwei & Ma, Qian & Mao, Menglin & Cui, Chunhua, 2017. "Development of MEA-based CO2 phase change absorbent," Applied Energy, Elsevier, vol. 195(C), pages 316-323.
    12. Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
    13. Jiang, Kaiqi & Li, Kangkang & Yu, Hai & Chen, Zuliang & Wardhaugh, Leigh & Feron, Paul, 2017. "Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process," Applied Energy, Elsevier, vol. 202(C), pages 496-506.
    14. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    15. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    16. Jiaquan Li & Yunbing Hou & Pengtao Wang & Bo Yang, 2018. "A Review of Carbon Capture and Storage Project Investment and Operational Decision-Making Based on Bibliometrics," Energies, MDPI, vol. 12(1), pages 1-22, December.
    17. Pereira, Luís M.C. & Vega, Lourdes F., 2018. "A systematic approach for the thermodynamic modelling of CO2-amine absorption process using molecular-based models," Applied Energy, Elsevier, vol. 232(C), pages 273-291.
    18. Pereira, Luís M.C. & Llovell, Fèlix & Vega, Lourdes F., 2018. "Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models," Applied Energy, Elsevier, vol. 222(C), pages 687-703.
    19. Wu, Ying & Chen, Xiaoping & Ma, Jiliang & Wu, Ye & Liu, Daoyin & Xie, Weiyi, 2020. "System integration optimization for coal-fired power plant with CO2 capture by Na2CO3 dry sorbents," Energy, Elsevier, vol. 211(C).
    20. Yun, Seokwon & Lee, Sunghoon & Jang, Mun-Gi & Kim, Jin-Kuk, 2021. "Techno-economic assessment of CO2 capture integrated coal-fired power plant with energetic analysis," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2139-:d:1386571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.