IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v92y2012icp668-676.html
   My bibliography  Save this article

Solar-assisted Post-combustion Carbon Capture feasibility study

Author

Listed:
  • Mokhtar, Marwan
  • Ali, Muhammad Tauha
  • Khalilpour, Rajab
  • Abbas, Ali
  • Shah, Nilay
  • Hajaj, Ahmed Al
  • Armstrong, Peter
  • Chiesa, Matteo
  • Sgouridis, Sgouris

Abstract

Solvent-based Post-combustion Carbon Capture (PCC) is one of the promising technologies for reducing CO2 emissions from existing fossil-fuel power plants due to ease of retrofitting. A significant obstacle in widely deploying this technology is the power plant output reduction (Output Power Penalty – OPP) due to the energy intensive CO2 separation process. In this paper we propose and theoretically evaluate a system to reduce the OPP by providing part of the PCC energy input using solar thermal energy. It is hypothesized that reducing the OPP during the daytime coincides with peaks in wholesale electricity prices thus increasing the revenue stream for a solar-assisted PCC (SPCC) plant. The general framework for assessing and sizing an SPCC system is presented. A techno-economic assessment is performed as a case study for a 300MWe pulverized coal power plant in New South Wales, Australia using actual weather and wholesale electricity price data. It is shown that the proposed technology can be economically viable for solar collector costs of US$100/m2 at current retail electricity prices and optimal Solar load-Fraction (SF) of 22% (SF is the portion of solvent regeneration energy provided by solar energy). The convergence of increasing electricity prices and decreasing collector costs improves SPCC viability at higher SF.

Suggested Citation

  • Mokhtar, Marwan & Ali, Muhammad Tauha & Khalilpour, Rajab & Abbas, Ali & Shah, Nilay & Hajaj, Ahmed Al & Armstrong, Peter & Chiesa, Matteo & Sgouridis, Sgouris, 2012. "Solar-assisted Post-combustion Carbon Capture feasibility study," Applied Energy, Elsevier, vol. 92(C), pages 668-676.
  • Handle: RePEc:eee:appene:v:92:y:2012:i:c:p:668-676
    DOI: 10.1016/j.apenergy.2011.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911004776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Page, S.C. & Williamson, A.G. & Mason, I.G., 2009. "Carbon capture and storage: Fundamental thermodynamics and current technology," Energy Policy, Elsevier, vol. 37(9), pages 3314-3324, September.
    2. Huang, Bin & Xu, Shisen & Gao, Shiwang & Liu, Lianbo & Tao, Jiye & Niu, Hongwei & Cai, Ming & Cheng, Jian, 2010. "Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station," Applied Energy, Elsevier, vol. 87(11), pages 3347-3354, November.
    3. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 2: The offshore and the onshore processes," Applied Energy, Elsevier, vol. 86(6), pages 793-804, June.
    4. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
    5. Mokhtar, Marwan & Ali, Muhammad Tauha & Bräuniger, Simon & Afshari, Afshin & Sgouridis, Sgouris & Armstrong, Peter & Chiesa, Matteo, 2010. "Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data," Applied Energy, Elsevier, vol. 87(12), pages 3766-3778, December.
    6. Hetland, Jens & Kvamsdal, Hanne Marie & Haugen, Geir & Major, Fredrik & Kårstad, Vemund & Tjellander, Göran, 2009. "Integrating a full carbon capture scheme onto a 450Â MWe NGCC electric power generation hub for offshore operations: Presenting the Sevan GTW concept," Applied Energy, Elsevier, vol. 86(11), pages 2298-2307, November.
    7. Hetland, Jens & Zheng, Li & Shisen, Xu, 2009. "How polygeneration schemes may develop under an advanced clean fossil fuel strategy under a joint sino-European initiative," Applied Energy, Elsevier, vol. 86(2), pages 219-229, February.
    8. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    9. Aspelund, Audun & Tveit, Steinar P. & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 3: The combined carrier and onshore storage," Applied Energy, Elsevier, vol. 86(6), pages 805-814, June.
    10. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    11. Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 4: Sensitivity analysis of transport pressures and benchmarking with conv," Applied Energy, Elsevier, vol. 86(6), pages 815-825, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
    2. Galanti, Leandro & Franzoni, Alessandro & Traverso, Alberto & Massardo, Aristide F., 2011. "Existing large steam power plant upgraded for hydrogen production," Applied Energy, Elsevier, vol. 88(5), pages 1510-1518, May.
    3. Zhu, Lei & Fan, Ying, 2011. "A real options–based CCS investment evaluation model: Case study of China’s power generation sector," Applied Energy, Elsevier, vol. 88(12), pages 4320-4333.
    4. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    5. Chi, Chung-Cheng & Lin, Ta-Hui, 2013. "Oxy-oil combustion characteristics of an existing furnace," Applied Energy, Elsevier, vol. 102(C), pages 923-930.
    6. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I, 2011. "A theoretical analysis of the capture of greenhouse gases by single water droplet at atmospheric and elevated pressures," Applied Energy, Elsevier, vol. 88(12), pages 5120-5130.
    7. Obara, Shin’ya & Yamada, Takanobu & Matsumura, Kazuhiro & Takahashi, Shiro & Kawai, Masahito & Rengarajan, Balaji, 2011. "Operational planning of an engine generator using a high pressure working fluid composed of CO2 hydrate," Applied Energy, Elsevier, vol. 88(12), pages 4733-4741.
    8. Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
    9. Pérez Sánchez, Jordán & Aguillón Martínez, Javier Eduardo & Mazur Czerwiec, Zdzislaw & Zavala Guzmán, Alan Martín, 2019. "Theoretical assessment of integration of CCS in the Mexican electrical sector," Energy, Elsevier, vol. 167(C), pages 828-840.
    10. Jiang, Xi & Akber Hassan, Wasim A. & Gluyas, Jon, 2013. "Modelling and monitoring of geological carbon storage: A perspective on cross-validation," Applied Energy, Elsevier, vol. 112(C), pages 784-792.
    11. Lee, Inkyu & Park, Jinwoo & You, Fengqi & Moon, Il, 2019. "A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis," Energy, Elsevier, vol. 173(C), pages 691-705.
    12. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    13. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
    14. Yan, G. & Gu, Y., 2010. "Effect of parameters on performance of LNG-FPSO offloading system in offshore associated gas fields," Applied Energy, Elsevier, vol. 87(11), pages 3393-3400, November.
    15. Teyber, Reed & Holladay, Jamelyn & Meinhardt, Kerry & Polikarpov, Evgueni & Thomsen, Edwin & Cui, Jun & Rowe, Andrew & Barclay, John, 2019. "Performance investigation of a high-field active magnetic regenerator," Applied Energy, Elsevier, vol. 236(C), pages 426-436.
    16. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    17. Zhao, Guoying & Aziz, Baroz & Hedin, Niklas, 2010. "Carbon dioxide adsorption on mesoporous silica surfaces containing amine-like motifs," Applied Energy, Elsevier, vol. 87(9), pages 2907-2913, September.
    18. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    19. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
    20. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:92:y:2012:i:c:p:668-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.