IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2016-d1382080.html
   My bibliography  Save this article

Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil

Author

Listed:
  • Khoshim Kh. Urazov

    (Institute of Petroleum Chemistry SB RAS, 4, Akademicheskiy Ave, Tomsk 634055, Russia)

  • Nikita N. Sviridenko

    (Institute of Petroleum Chemistry SB RAS, 4, Akademicheskiy Ave, Tomsk 634055, Russia)

  • Yulia A. Sviridenko

    (Institute of Petroleum Chemistry SB RAS, 4, Akademicheskiy Ave, Tomsk 634055, Russia)

  • Veronika R. Utyaganova

    (Institute of Strength Physics and Materials Science SB RAS, Tomsk 634055, Russia)

Abstract

Heavy oils are characterized by a high content of resins and asphaltenes, which complicates refining and leads to an increase in the cost of refinery products. These components can be strongly adsorbed on the acid sites of a supported catalyst, leading to its deactivation. Currently, various salts of group 8 metals are being considered for such processes to act as catalysts during oil cracking. At the same time, the nature of the precursor often has a significant impact on the process of refining heavy oil. In this work, catalytic cracking of heavy oil from the Ashalchinskoye field using different precursors (nanodispersed catalysts formed in situ based on NiO) has been studied. The cracking was carried out at 450 °C with a catalyst content from 0.1 to 0.5 wt.%. The catalytic cracking products were analyzed via SARA, GC, XRD and SEM. Nickel acetate and nitrate promote similar yields of by-products, while formate promotes higher yields of gaseous products. Formate and nickel acetate were shown to produce 1.8 and 2.8 wt.% more light fractions than nickel nitrate. When heavy oil is cracked in the presence of Ni(NO 3 ) 2 ∙6H 2 O, the maximum decrease in sulfur content (2.12 wt.%) is observed compared to other precursors. It has been found that the composition and morphology of the resulting nickel sulfides and compaction products are influenced by the nature of the catalyst precursor. XRD and SEM analyses of coke-containing catalysts indicate the formation of Ni 9 S 8 and Ni 0.96 S phases during cracking when nickel nitrate is used and the formation of NiS and Ni 9 S 8 when nickel acetate and formate are used.

Suggested Citation

  • Khoshim Kh. Urazov & Nikita N. Sviridenko & Yulia A. Sviridenko & Veronika R. Utyaganova, 2024. "Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil," Energies, MDPI, vol. 17(9), pages 1-12, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2016-:d:1382080
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2016/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2016/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhengbin Wu & Hanzhao Chen & Xidong Cai & Qiyang Gou & Liangliang Jiang & Kai Chen & Zhangxin Chen & Shu Jiang, 2023. "Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil," Energies, MDPI, vol. 16(12), pages 1-29, June.
    2. Hashemi, Rohallah & Nassar, Nashaat N. & Pereira Almao, Pedro, 2014. "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, Elsevier, vol. 133(C), pages 374-387.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    2. Misbah Saboohi, 2020. "Exploring the Compensation Plans Under International Laws from Offshore Oil Facilities and Relationship between Oil Production, Trade and Carbon Emission: An Evidence from Global Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 265-273.
    3. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    4. Shangli Liu & Haifeng Gai & Peng Cheng, 2023. "Technical Scheme and Application Prospects of Oil Shale In Situ Conversion: A Review of Current Status," Energies, MDPI, vol. 16(11), pages 1-22, May.
    5. Ajumobi, Oluwole O. & Muraza, Oki & Kondoh, Hisaki & Hasegawa, Natsumi & Nakasaka, Yuta & Yoshikawa, Takuya & Al Amer, Adnan M. & Masuda, Takao, 2018. "Upgrading oil sand bitumen under superheated steam over ceria-based nanocomposite catalysts," Applied Energy, Elsevier, vol. 218(C), pages 1-9.
    6. Chai, Maojie & Nourozieh, Hossein & Chen, Zhangxin & Yang, Min, 2022. "A semi-compositional approach to model asphaltene precipitation and deposition in solvent-based bitumen recovery processes," Applied Energy, Elsevier, vol. 328(C).
    7. Gang Fang & Guang Li & Zhi Kou & Huishu Liu & Jimiao Duan & Yan Chen, 2024. "Flow Characteristics of Oil-Carrying by Water in Downward-Inclined and Horizontal Mobile Pipeline," Energies, MDPI, vol. 17(19), pages 1-19, September.
    8. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    9. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    10. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    11. Xia, Wenjie & Shen, Weijun & Yu, Li & Zheng, Chenggang & Yu, Weichu & Tang, Yongchun, 2016. "Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir," Applied Energy, Elsevier, vol. 171(C), pages 646-655.
    12. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).
    13. Oscar E. Medina & Carol Olmos & Sergio H. Lopera & Farid B. Cortés & Camilo A. Franco, 2019. "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, MDPI, vol. 12(24), pages 1-36, December.
    14. Hugo Alejandro García-Duarte & María Carolina Ruiz-Cañas & Romel Antonio Pérez-Romero, 2022. "Innovative Experimental Design for the Evaluation of Nanofluid-Based Solvent as a Hybrid Technology for Optimizing Cyclic Steam Stimulation Applications," Energies, MDPI, vol. 16(1), pages 1-21, December.
    15. Yuejie Wang & Wei Zheng & Hongyou Zhang & Chenyang Tang & Jun Zhang & Dengfei Yu & Xuanfeng Lu & Gang Li, 2024. "The Role of Amphiphilic Nanosilica Fluid in Reducing Viscosity in Heavy Oil," Energies, MDPI, vol. 17(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2016-:d:1382080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.