IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2625-d1404673.html
   My bibliography  Save this article

The Role of Amphiphilic Nanosilica Fluid in Reducing Viscosity in Heavy Oil

Author

Listed:
  • Yuejie Wang

    (CNOOC China Limited-Pengbo Operating Company, Tianjin 300459, China)

  • Wei Zheng

    (National Key Laboratory of Offshore Oil and Gas Exploitation, Beijing 102209, China
    CNOOC Research Institute Co., Ltd., Beijing 100028, China)

  • Hongyou Zhang

    (CNOOC Tianjin Branch, Binhai New Area, Tianjin 300450, China)

  • Chenyang Tang

    (National Key Laboratory of Offshore Oil and Gas Exploitation, Beijing 102209, China
    CNOOC Research Institute Co., Ltd., Beijing 100028, China)

  • Jun Zhang

    (CNOOC China Limited-Pengbo Operating Company, Tianjin 300459, China)

  • Dengfei Yu

    (CNOOC China Limited-Pengbo Operating Company, Tianjin 300459, China)

  • Xuanfeng Lu

    (National Engineering Research Center for Oil & Gas Drilling and Completion Technology, School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
    Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China)

  • Gang Li

    (National Engineering Research Center for Oil & Gas Drilling and Completion Technology, School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
    Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China)

Abstract

Heavy oil accounts for a considerable proportion of the world’s petroleum resources, and its exploitation helps to mitigate reliance on conventional oil resources and diversify energy supply. However, due to the high viscosity and high adhesion characteristics of heavy oil, conventional methods such as thermal recovery, emulsification, and dilution have significant limitations and cannot meet the growing demands for heavy oil production. In this study, 3-propyltrimethoxysilane (MPS) was used to modify and graft amphiphilic surfactants (AS) onto nanosilica to prepare a salt-resistant (total mineralization > 8000 mg/L, Ca 2+ + Mg 2+ > 1000 mg/L) and temperature-resistant (250 °C) nanosilicon viscosity reducer (NSD). This article compares amphiphilic surfactants (AS) as conventional viscosity-reducing agents with NSD. FTIR and TEM measurements indicated successful bonding of 3-propyltrimethoxysilane to the surface of silica. Experimental results show that at a concentration of 0.2 wt% and a mineralization of 8829 mg/L, the viscosity reduction rates of thick oil (LD-1) before and after aging were 85.29% and 81.36%, respectively, from an initial viscosity of 38,700 mPa·s. Contact angle experiments demonstrated that 0.2 wt% concentration of NSD could change the surface of reservoir rock from oil-wet to water-wet. Interfacial tension experiments showed that the interfacial tension between 0.2 wt% NSD and heavy oil was 0.076 mN/m. Additionally, when the liquid-to-solid ratio was 10:1, the dynamic and static adsorption amounts of 0.2 wt% NSD were 1.328 mg/g-sand and 0.745 mg/g-sand, respectively. Furthermore, one-dimensional displacement experiments verified the oil recovery performance of NSD at different concentrations (0.1 wt%, 0.15 wt%, 0.2 wt%, 0.25 wt%) at 250 °C and compared the oil recovery efficiency of 0.2 wt% NSD with different types of demulsifiers. Experimental results indicate that the recovery rate increased with the increase in NSD concentration, and 0.2 wt% NSD could improve the recovery rate of heavy oil by 22.8% at 250 °C. The study of nano-demulsification oil recovery systems can effectively improve the development efficiency of heavy oil.

Suggested Citation

  • Yuejie Wang & Wei Zheng & Hongyou Zhang & Chenyang Tang & Jun Zhang & Dengfei Yu & Xuanfeng Lu & Gang Li, 2024. "The Role of Amphiphilic Nanosilica Fluid in Reducing Viscosity in Heavy Oil," Energies, MDPI, vol. 17(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2625-:d:1404673
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hashemi, Rohallah & Nassar, Nashaat N. & Pereira Almao, Pedro, 2014. "Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges," Applied Energy, Elsevier, vol. 133(C), pages 374-387.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    2. Khoshim Kh. Urazov & Nikita N. Sviridenko & Yulia A. Sviridenko & Veronika R. Utyaganova, 2024. "Influence of a Precursor Catalyst on the Composition of Products in Catalytic Cracking of Heavy Oil," Energies, MDPI, vol. 17(9), pages 1-12, April.
    3. Misbah Saboohi, 2020. "Exploring the Compensation Plans Under International Laws from Offshore Oil Facilities and Relationship between Oil Production, Trade and Carbon Emission: An Evidence from Global Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 265-273.
    4. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    5. Shangli Liu & Haifeng Gai & Peng Cheng, 2023. "Technical Scheme and Application Prospects of Oil Shale In Situ Conversion: A Review of Current Status," Energies, MDPI, vol. 16(11), pages 1-22, May.
    6. Ajumobi, Oluwole O. & Muraza, Oki & Kondoh, Hisaki & Hasegawa, Natsumi & Nakasaka, Yuta & Yoshikawa, Takuya & Al Amer, Adnan M. & Masuda, Takao, 2018. "Upgrading oil sand bitumen under superheated steam over ceria-based nanocomposite catalysts," Applied Energy, Elsevier, vol. 218(C), pages 1-9.
    7. Chai, Maojie & Nourozieh, Hossein & Chen, Zhangxin & Yang, Min, 2022. "A semi-compositional approach to model asphaltene precipitation and deposition in solvent-based bitumen recovery processes," Applied Energy, Elsevier, vol. 328(C).
    8. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    9. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    10. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
    11. Xia, Wenjie & Shen, Weijun & Yu, Li & Zheng, Chenggang & Yu, Weichu & Tang, Yongchun, 2016. "Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir," Applied Energy, Elsevier, vol. 171(C), pages 646-655.
    12. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).
    13. Oscar E. Medina & Carol Olmos & Sergio H. Lopera & Farid B. Cortés & Camilo A. Franco, 2019. "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, MDPI, vol. 12(24), pages 1-36, December.
    14. Hugo Alejandro García-Duarte & María Carolina Ruiz-Cañas & Romel Antonio Pérez-Romero, 2022. "Innovative Experimental Design for the Evaluation of Nanofluid-Based Solvent as a Hybrid Technology for Optimizing Cyclic Steam Stimulation Applications," Energies, MDPI, vol. 16(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2625-:d:1404673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.