IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1935-d1378210.html
   My bibliography  Save this article

Optimizing Generative AI Chatbots for Net-Zero Emissions Energy Internet-of-Things Infrastructure

Author

Listed:
  • Amali Matharaarachchi

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia
    These authors contributed equally to this work.)

  • Wishmitha Mendis

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia
    These authors contributed equally to this work.)

  • Kanishka Randunu

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia
    These authors contributed equally to this work.)

  • Daswin De Silva

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Gihan Gamage

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Harsha Moraliyage

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Nishan Mills

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

  • Andrew Jennings

    (Centre for Data Analytics and Cognition, La Trobe University, Bundoora, VIC 3086, Australia)

Abstract

Internet-of-Things (IoT) technologies have been steadily adopted and embedded into energy infrastructure following the rapid transformation of energy grids through distributed consumption, renewables generation, and battery storage. The data streams produced by such energy IoT infrastructure can be extracted, processed, analyzed, and synthesized for informed decision-making that delivers optimized grid operations, reduced costs, and net-zero carbon emissions. However, the voluminous nature of such data streams leads to an equally large number of analysis outcomes that have proven ineffective in decision-making by energy grid operators. This gap can be addressed by introducing artificial intelligence (AI) chatbots, or more formally conversational agents, to proactively assist human operators in analyzing and identifying decision opportunities in energy grids. In this research, we draw upon the recent success of generative AI for optimized AI chatbots with natural language understanding and generation capabilities for the complex information needs of energy IoT infrastructure and net-zero emissions. The proposed approach for optimized generative AI chatbots is composed of six core modules: Intent Classifier, Knowledge Extractor, Database Retriever, Cached Hierarchical Vector Storage, Secure Prompting, and Conversational Interface with Language Generator. We empirically evaluate the proposed approach and the optimized generative AI chatbot in the real-world setting of an energy IoT infrastructure deployed at a large, multi-campus tertiary education institution. The results of these experiments confirm the contribution of generative AI chatbots in simplifying the complexity of energy IoT infrastructure for optimized grid operations and net-zero carbon emissions.

Suggested Citation

  • Amali Matharaarachchi & Wishmitha Mendis & Kanishka Randunu & Daswin De Silva & Gihan Gamage & Harsha Moraliyage & Nishan Mills & Andrew Jennings, 2024. "Optimizing Generative AI Chatbots for Net-Zero Emissions Energy Internet-of-Things Infrastructure," Energies, MDPI, vol. 17(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1935-:d:1378210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik Brynjolfsson & Danielle Li & Lindsey Raymond, 2023. "Generative AI at Work," Papers 2304.11771, arXiv.org, revised Nov 2024.
    2. Tyna Eloundou & Sam Manning & Pamela Mishkin & Daniel Rock, 2023. "GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models," Papers 2303.10130, arXiv.org, revised Aug 2023.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carvajal, Daniel & Franco, Catalina & Isaksson, Siri, 2024. "Will Artificial Intelligence Get in the Way of Achieving Gender Equality?," Discussion Paper Series in Economics 3/2024, Norwegian School of Economics, Department of Economics, revised 31 Oct 2024.
    2. Christian Peukert & Florian Abeillon & Jérémie Haese & Franziska Kaiser & Alexander Staub, 2024. "Strategic Behavior and AI Training Data," CESifo Working Paper Series 11099, CESifo.
    3. James Bono & Alec Xu, 2024. "Randomized Controlled Trials for Security Copilot for IT Administrators," Papers 2411.01067, arXiv.org, revised Nov 2024.
    4. Ozge Demirci & Jonas Hannane & Xinrong Zhu, 2024. "Who Is AI Replacing? The Impact of Generative AI on Online Freelancing Platforms," CESifo Working Paper Series 11276, CESifo.
    5. Daniel Goller & Christian Gschwendt & Stefan C. Wolter, 2023. ""This time it's different" Generative Artificial Intelligence and Occupational Choice," Economics of Education Working Paper Series 0209, University of Zurich, Department of Business Administration (IBW).
    6. Jason P Davis & Jian Bai Li, 2024. "Early Adoption of Generative AI by Global Business Leaders: Insights from an INSEAD Alumni Survey," Papers 2404.04543, arXiv.org.
    7. Becker, Dominik & Deck, Luca & Feulner, Simon & Gutheil, Niklas & Schüll, Moritz & Decker, Stefan & Eymann, Torsten & Gimpel, Henner & Pippow, Andreas & Röglinger, Maximilian & Urbach, Nils, 2024. "Lohnt sich Microsoft 365 Copilot? Eine Potenzialanalyse für Unternehmen und Bildungseinrichtungen," Bayreuth Reports on Information Systems Management 72, University of Bayreuth, Chair of Information Systems Management.
    8. Walkowiak, Emmanuelle, 2023. "Task-interdependencies between Generative AI and Workers," Economics Letters, Elsevier, vol. 231(C).
    9. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    10. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    11. Gaétan de Rassenfosse & Adam B. Jaffe & Joel Waldfogel, 2024. "Intellectual Property and Creative Machines," NBER Chapters, in: Entrepreneurship and Innovation Policy and the Economy, volume 4, National Bureau of Economic Research, Inc.
    12. Mirko Draca & Max Nathan & Viet Nguyen-Tien & Juliana Oliveira-Cunha & Anna Rosso & Anna Valero, 2024. "The New Wave? The Role of Human Capital and STEM Skills in Technology Adoption in the UK," Development Working Papers 495, Centro Studi Luca d'Agliano, University of Milano.
    13. Berlinski, Elise & Morales, Jérémy & Sponem, Samuel, 2024. "Artificial imaginaries: Generative AIs as an advanced form of capitalism," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 99(C).
    14. Lilia Patrignani, 2024. "Understanding digital trade," Questioni di Economia e Finanza (Occasional Papers) 841, Bank of Italy, Economic Research and International Relations Area.
    15. Caleb Peppiatt, 2024. "The Future of Work: Inequality, Artificial Intelligence, and What Can Be Done About It. A Literature Review," Papers 2408.13300, arXiv.org.
    16. D'Al, Francesco & Santarelli, Enrico & Vivarelli, Marco, 2024. "The KSTE+I approach and the advent of AI technologies: evidence from the European regions," GLO Discussion Paper Series 1473, Global Labor Organization (GLO).
    17. Anna Davies & Betsy Donald & Mia Gray, 2023. "The power of platforms—precarity and place," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 16(2), pages 245-256.
    18. Leonardo Gambacorta & Han Qiu & Shuo Shan & Daniel M Rees, 2024. "Generative AI and labour productivity: a field experiment on coding," BIS Working Papers 1208, Bank for International Settlements.
    19. Samir Huseynov, 2023. "ChatGPT and the Labor Market: Unraveling the Effect of AI Discussions on Students' Earnings Expectations," Papers 2305.11900, arXiv.org, revised Aug 2023.
    20. Stankov, Petar, 2024. "The death of exams? Grade inflation and student satisfaction when coursework replaces exams," International Review of Economics Education, Elsevier, vol. 46(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1935-:d:1378210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.