IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1924-d1377704.html
   My bibliography  Save this article

Optimizing the Installation of a Centralized Green Hydrogen Production Facility in the Island of Crete, Greece

Author

Listed:
  • Arif Ahmed

    (Power Systems Consultants, Burnaby, BC V5G 4Y2, Canada)

  • Evangelos E. Pompodakis

    (Institute of Energy, Environment and Climatic Change, Hellenic Mediterranean University, 714 10 Iraklio, Greece)

  • Yiannis Katsigiannis

    (School of Engineering, Power Systems and Energy Engineering, Hellenic Mediterranean University, 731 33 Chania, Greece)

  • Emmanuel S. Karapidakis

    (School of Engineering, Power Systems and Energy Engineering, Hellenic Mediterranean University, 731 33 Chania, Greece)

Abstract

The European Union is committed to a 55% reduction in greenhouse gas emissions by 2030, as outlined in the Green Deal and Climate Law initiatives. In response to geopolitical events, the RePowerEU initiative aims to enhance energy self-sufficiency, reduce reliance on Russian natural gas, and promote hydrogen utilization. Hydrogen valleys, localized ecosystems integrating various hydrogen supply chain elements, play a key role in this transition, particularly benefiting isolated regions like islands. This manuscript focuses on optimizing a Centralized Green Hydrogen Production Facility (CGHPF) on the island of Crete. A mixed-integer linear programming framework is proposed to optimize the CGHPF, considering factors such as land area, wind and solar potential, costs, and efficiency. Additionally, an in-depth sensitivity analysis is conducted to explore the impact of key factors on the economic feasibility of hydrogen investments. The findings suggest that hydrogen can be sold in Crete at prices as low as 3.5 EUR/kg. Specifically, it was found in the base scenario that, selling hydrogen at 3.5 EUR/kg, the net profit of the investment could be as high as EUR 6.19 million, while the capacity of the solar and wind installation supplying the grid hydrogen facility would be 23.51 MW and 52.97 MW, respectively. It is noted that the high profitability is justified by the extraordinary renewable potential of Crete. Finally, based on our study, a policy recommendation to allow a maximum of 20% direct penetration of renewable sources of green hydrogen facilities into the grid is suggested to encourage and accelerate green hydrogen expansion.

Suggested Citation

  • Arif Ahmed & Evangelos E. Pompodakis & Yiannis Katsigiannis & Emmanuel S. Karapidakis, 2024. "Optimizing the Installation of a Centralized Green Hydrogen Production Facility in the Island of Crete, Greece," Energies, MDPI, vol. 17(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1924-:d:1377704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiman Albatayneh & Adel Juaidi & Mustafa Jaradat & Francisco Manzano-Agugliaro, 2023. "Future of Electric and Hydrogen Cars and Trucks: An Overview," Energies, MDPI, vol. 16(7), pages 1-16, April.
    2. Begoña Vivanco-Martín & Alfredo Iranzo, 2023. "Analysis of the European Strategy for Hydrogen: A Comprehensive Review," Energies, MDPI, vol. 16(9), pages 1-36, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Małek & Agnieszka Dudziak & Jacek Caban & Monika Stoma, 2024. "Strategic Model for Yellow Hydrogen Production Using the Metalog Family of Probability Distributions," Energies, MDPI, vol. 17(10), pages 1-24, May.
    2. Lu Wang & Zhijun Jin & Xiaowei Huang & Runchao Liu & Yutong Su & Qian Zhang, 2024. "Hydrogen Adsorption in Porous Geological Materials: A Review," Sustainability, MDPI, vol. 16(5), pages 1-21, February.
    3. El Hafdaoui, Hamza & Jelti, Faissal & Khallaayoun, Ahmed & Jamil, Abdelmajid & Ouazzani, Kamar, 2024. "Energy and environmental evaluation of alternative fuel vehicles in Maghreb countries," Innovation and Green Development, Elsevier, vol. 3(1).
    4. Rafael Pereira & Vitor Monteiro & Joao L. Afonso & Joni Teixeira, 2024. "Hydrogen Refueling Stations: A Review of the Technology Involved from Key Energy Consumption Processes to Related Energy Management Strategies," Energies, MDPI, vol. 17(19), pages 1-16, September.
    5. Aleksandra Alicja Olejarz & Małgorzata Kędzior-Laskowska, 2024. "How Much Progress Have We Made towards Decarbonization? Policy Implications Based on the Demand for Electric Cars in Poland," Energies, MDPI, vol. 17(16), pages 1-28, August.
    6. Mingyue Hu & Xiao Wu & Yue Yuan & Chuanbo Xu, 2024. "Competitive Analysis of Heavy Trucks with Five Types of Fuels under Different Scenarios—A Case Study of China," Energies, MDPI, vol. 17(16), pages 1-21, August.
    7. Luca Cattani & Matteo Malavasi & Fabio Bozzoli & Valerio D’Alessandro & Luca Giammichele, 2023. "Experimental Analysis of an Innovative Electrical Battery Thermal Management System," Energies, MDPI, vol. 16(13), pages 1-17, June.
    8. Eugeniusz Mokrzycki & Lidia Gawlik, 2024. "The Development of a Green Hydrogen Economy: Review," Energies, MDPI, vol. 17(13), pages 1-29, June.
    9. Javier Rey & Lázaro V. Cremades, 2023. "Evaluation of the Power Generation Impact for the Mobility of Battery Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-16, June.
    10. Ludmiła Filina-Dawidowicz & Joanna Sęk & Piotr Trojanowski & Anna Wiktorowska-Jasik, 2024. "Conditions of Decision-Making Related to Implementation of Hydrogen-Powered Vehicles in Urban Transport: Case Study of Poland," Energies, MDPI, vol. 17(14), pages 1-26, July.
    11. Evangelos E. Pompodakis & Georgios I. Orfanoudakis & Yiannis Katsigiannis & Emmanouel Karapidakis, 2024. "Techno-Economic Feasibility Analysis of an Offshore Wave Power Facility in the Aegean Sea, Greece," Energies, MDPI, vol. 17(18), pages 1-23, September.
    12. Muhammad Amin & Hamad Hussain Shah & Bilal Bashir & Muhammad Azhar Iqbal & Umer Hameed Shah & Muhammad Umair Ali, 2023. "Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review," Energies, MDPI, vol. 16(11), pages 1-25, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1924-:d:1377704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.