IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1849-d1374700.html
   My bibliography  Save this article

Construction and Application of the Double Game Model for Direct Purchase of Electricity by Large Consumers under Consideration of Risk Factors

Author

Listed:
  • Wanting Yu

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China
    These authors contributed equally to this work.)

  • Xin Zhang

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China
    These authors contributed equally to this work.)

  • Mingli Cui

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

  • Tiantian Feng

    (School of Economics and Management, China University of Geosciences, Beijing 100083, China)

Abstract

With the development of global clean energy and the implementation of carbon emission reduction policies, the direct purchase of electricity by large consumers has been increasingly promoted as a special form of electricity trading. Therefore, on the basis of the completion of low-carbon emission reduction targets in each country, how to rationalize the electricity purchase by large consumers in the electricity market so as to reduce their electricity purchase costs has become the main target of attention in each country. Currently, there are fewer studies in existing research on the direct electricity purchase strategy of large consumers under the consideration of the weight of consumption responsibility and risk. Based on this, this paper constructs a dual-game model for direct electricity purchase by large consumers based on the Stackelberg game and non-cooperative game theory. The concept of value at risk is further introduced, and the optimal strategy of direct electricity purchase by large consumers is proposed. The results of this study show that when market players make decisions on the purchase and sale of electricity, power suppliers will increase their biddings to obtain the highest returns, and large consumers can reduce the transaction costs by combining the medium- and long-term market with the spot market to purchase electricity. In the choice of electricity purchase market, with the increasing risk factor, large consumers shift from the risky spot market to the less risky medium- and long-term market and option market. This paper provides a reference for the issues of power suppliers’ contract bidding and large consumers’ electricity purchase strategy in the medium- and long-term contract transactions.

Suggested Citation

  • Wanting Yu & Xin Zhang & Mingli Cui & Tiantian Feng, 2024. "Construction and Application of the Double Game Model for Direct Purchase of Electricity by Large Consumers under Consideration of Risk Factors," Energies, MDPI, vol. 17(8), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1849-:d:1374700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Yuxiang & Ma, Gang & Yao, Yunting & Li, Hao, 2024. "Nash bargaining based integrated energy agent optimal operation strategy considering negotiation pricing for tradable green certificate," Applied Energy, Elsevier, vol. 356(C).
    2. Ju, Liwei & Wu, Jing & Lin, Hongyu & Tan, Qinliang & Li, Gen & Tan, Zhongfu & Li, Jiayu, 2020. "Robust purchase and sale transactions optimization strategy for electricity retailers with energy storage system considering two-stage demand response," Applied Energy, Elsevier, vol. 271(C).
    3. Chen Zhao & Jiaqi Sun & Ping He & Shaohua Zhang & Yuqi Ji, 2023. "Integrating Risk Preferences into Game Analysis of Price-Making Retailers in Power Market," Energies, MDPI, vol. 16(8), pages 1-18, April.
    4. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    5. Zahid Yousaf & Magdalena Radulescu & Crenguta Sinisi & Abdelmohsen A. Nassani & Mohamed Haffar, 2022. "How Do Firms Achieve Green Innovation? Investigating the Influential Factors among the Energy Sector," Energies, MDPI, vol. 15(7), pages 1-14, March.
    6. Sun, Bo & Li, Mingzhe & Wang, Fan & Xie, Jingdong, 2023. "An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: A two-level Stackelberg game approach," Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    2. Hui Wang & Yao Xu, 2024. "Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study," Energies, MDPI, vol. 17(11), pages 1-15, May.
    3. Li, He & Wang, Pengyu & Fang, Debin, 2024. "Differentiated pricing for the retail electricity provider optimizing demand response to renewable energy fluctuations," Energy Economics, Elsevier, vol. 136(C).
    4. Guori Huang & Zheng Chen & Nan Shang & Xiaoyue Hu & Chen Wang & Huan Wen & Zhiliang Liu, 2024. "Do Tradable Green Certificates Promote Regional Carbon Emissions Reduction for Sustainable Development? Evidence from China," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
    5. Suroso Isnandar & Jonathan F. Simorangkir & Kevin M. Banjar-Nahor & Hendry Timotiyas Paradongan & Nanang Hariyanto, 2024. "A Multiparadigm Approach for Generation Dispatch Optimization in a Regulated Electricity Market towards Clean Energy Transition," Energies, MDPI, vol. 17(15), pages 1-28, August.
    6. Tianlei Zang & Shijun Wang & Zian Wang & Chuangzhi Li & Yunfei Liu & Yujian Xiao & Buxiang Zhou, 2024. "Integrated Planning and Operation Dispatching of Source–Grid–Load–Storage in a New Power System: A Coupled Socio–Cyber–Physical Perspective," Energies, MDPI, vol. 17(12), pages 1-43, June.
    7. Lee, Chien-Chiang & Hussain, Jafar & Mu, Xian, 2024. "Renewable energy and carbon-neutral gaming: A holistic approach to sustainable electricity," Energy, Elsevier, vol. 297(C).
    8. Cai, Zheng & Qian, Long, 2023. "Scarcity of mineral resources and governance and development of renewable energy projects in China," Resources Policy, Elsevier, vol. 86(PB).
    9. Ju, Liwei & Lu, Xiaolong & Yang, Shenbo & Li, Gen & Fan, Wei & Pan, Yushu & Qiao, Huiting, 2022. "A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response," Applied Energy, Elsevier, vol. 327(C).
    10. Lee, Chien-Chiang & Hussain, Jafar, 2023. "Energy sustainability under the COVID-19 outbreak: Electricity break-off policy to minimize electricity market crises," Energy Economics, Elsevier, vol. 125(C).
    11. Yong Fang & Minghao Li & Yunli Yue & Zhonghua Liu, 2024. "Two-Tier Configuration Model for the Optimization of Enterprise Costs and User Satisfaction for Rural Microgrids," Mathematics, MDPI, vol. 12(20), pages 1-19, October.
    12. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    13. Tian, Xiaoge & Chen, Weiming & Hu, Jinglu, 2023. "Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province," Energy, Elsevier, vol. 262(PA).
    14. Humberto Verdejo Fredes & Benjamin Acosta & Mauricio Olivares & Fernando García-Muñoz & Francisco Tobar & Vannia Toro & Cesar Smith & Cristhian Becker, 2021. "Impact of Energy Price Stabilization Mechanism on Regulated Clients’ Tariffs: The Case of Chile," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    15. Ding, Bing & Li, Zening & Li, Zhengmao & Xue, Yixun & Chang, Xinyue & Su, Jia & Jin, Xiaolong & Sun, Hongbin, 2024. "A CCP-based distributed cooperative operation strategy for multi-agent energy systems integrated with wind, solar, and buildings," Applied Energy, Elsevier, vol. 365(C).
    16. Xia, Yuanxing & Xu, Qingshan & Chen, Lu & Du, Pengwei, 2022. "The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review," Applied Energy, Elsevier, vol. 327(C).
    17. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    18. Fan, Wei & Tan, Qingbo & Zhang, Amin & Ju, Liwei & Wang, Yuwei & Yin, Zhe & Li, Xudong, 2023. "A Bi-level optimization model of integrated energy system considering wind power uncertainty," Renewable Energy, Elsevier, vol. 202(C), pages 973-991.
    19. Sandra Giraldo & David la Rotta & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortúa, 2021. "Digital Transformation of Energy Companies: A Colombian Case Study," Energies, MDPI, vol. 14(9), pages 1-14, April.
    20. Pan, Yushu & Ju, Liwei & Yang, Shenbo & Guo, Xinyu & Tan, Zhongfu, 2024. "A multi-objective robust optimal dispatch and cost allocation model for microgrids-shared hybrid energy storage system considering flexible ramping capacity," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1849-:d:1374700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.