IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1704-d1369160.html
   My bibliography  Save this article

Indirect Prediction of Lithium-Ion Battery RUL Based on CEEMDAN and CNN-BiGRU

Author

Listed:
  • Kai Lv

    (School of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China)

  • Zhiqiang Ma

    (School of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China
    Engineering Research Center of Large-Scale Energy Storage Technology, Ministry of Education, Hohhot 010080, China)

  • Caijilahu Bao

    (School of Data Science and Application, Inner Mongolia University of Technology, Hohhot 010080, China)

  • Guangchen Liu

    (Engineering Research Center of Large-Scale Energy Storage Technology, Ministry of Education, Hohhot 010080, China
    School of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China)

Abstract

Predicting the remaining useful life (RUL) of lithium-ion batteries is crucial for enhancing their reliability and safety. Addressing the issue of inaccurate RUL predictions caused by the nonlinear decay resulting from capacity regeneration, this paper proposes an indirect lithium-ion battery RUL prediction method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and convolutional neural network (CNN)–bidirectional gated recurrent unit (BiGRU). The method extracts Health Indicators (HI) from the battery-charging stage and employs CEEMDAN to decompose HI into several components. These components are then input into a component prediction model for forecasting. Finally, the predicted component results are fused and input into a capacity prediction model to achieve indirect RUL prediction. Validation is conducted using the lithium-ion battery dataset provided by NASA. The results indicate that, under prediction starting points (STs) of 80 and 100, the maximum average absolute errors do not exceed 0.0096 and 0.0081, and the maximum root mean square errors do not exceed 0.0196 and 0.0115, demonstrating high precision and reliability.

Suggested Citation

  • Kai Lv & Zhiqiang Ma & Caijilahu Bao & Guangchen Liu, 2024. "Indirect Prediction of Lithium-Ion Battery RUL Based on CEEMDAN and CNN-BiGRU," Energies, MDPI, vol. 17(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1704-:d:1369160
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Chun-Pang & Cabrera, Javier & Yang, Fangfang & Ling, Man-Ho & Tsui, Kwok-Leung & Bae, Suk-Joo, 2020. "Battery state of health modeling and remaining useful life prediction through time series model," Applied Energy, Elsevier, vol. 275(C).
    2. Chen, Zewang & Shi, Na & Ji, Yufan & Niu, Mu & Wang, Youren, 2021. "Lithium-ion batteries remaining useful life prediction based on BLS-RVM," Energy, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guarino, Antonio & Trinchero, Riccardo & Canavero, Flavio & Spagnuolo, Giovanni, 2022. "A fast fuel cell parametric identification approach based on machine learning inverse models," Energy, Elsevier, vol. 239(PC).
    2. Wang, Shunli & Wu, Fan & Takyi-Aninakwa, Paul & Fernandez, Carlos & Stroe, Daniel-Ioan & Huang, Qi, 2023. "Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-curren," Energy, Elsevier, vol. 284(C).
    3. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    4. Renxin, Xiao & Yi, Yang & Xianguang, Jia & Nan, Pan, 2023. "Collaborative estimations of state of energy and maximum available energy of lithium-ion batteries with optimized time windows considering instantaneous energy efficiencies," Energy, Elsevier, vol. 274(C).
    5. Tarhan, Burak & Yetik, Ozge & Karakoc, Tahir Hikmet, 2021. "Hybrid battery management system design for electric aircraft," Energy, Elsevier, vol. 234(C).
    6. Mei Zhang & Wanli Chen & Jun Yin & Tao Feng, 2022. "Health Factor Extraction of Lithium-Ion Batteries Based on Discrete Wavelet Transform and SOH Prediction Based on CatBoost," Energies, MDPI, vol. 15(15), pages 1-17, July.
    7. He, Ning & Wang, Qiqi & Lu, Zhenfeng & Chai, Yike & Yang, Fangfang, 2024. "Early prediction of battery lifetime based on graphical features and convolutional neural networks," Applied Energy, Elsevier, vol. 353(PA).
    8. Zhu, Ting & Chen, Zhen & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2024. "Adaptive staged remaining useful life prediction of roller in a hot strip mill based on multi-scale LSTM with multi-head attention," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.
    10. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    11. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    12. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Wenyu Qu & Guici Chen & Tingting Zhang, 2022. "An Adaptive Noise Reduction Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(19), pages 1-18, October.
    14. Zhang, Yong & Tu, Lei & Xue, Zhiwei & Li, Sai & Tian, Lulu & Zheng, Xiujuan, 2022. "Weight optimized unscented Kalman filter for degradation trend prediction of lithium-ion battery with error compensation strategy," Energy, Elsevier, vol. 251(C).
    15. Wang, Shunli & Fan, Yongcun & Jin, Siyu & Takyi-Aninakwa, Paul & Fernandez, Carlos, 2023. "Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Mathieu, Romain & Briat, Olivier & Gyan, Philippe & Vinassa, Jean-Michel, 2021. "Comparison of the impact of fast charging on the cycle life of three lithium-ion cells under several parameters of charge protocol and temperatures," Applied Energy, Elsevier, vol. 283(C).
    17. Liyuan Shao & Yong Zhang & Xiujuan Zheng & Xin He & Yufeng Zheng & Zhiwei Liu, 2023. "A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods," Energies, MDPI, vol. 16(3), pages 1-22, February.
    18. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    19. Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Chen, Dan & Meng, Jinhao & Huang, Huanyang & Wu, Ji & Liu, Ping & Lu, Jiwu & Liu, Tianqi, 2022. "An Empirical-Data Hybrid Driven Approach for Remaining Useful Life prediction of lithium-ion batteries considering capacity diving," Energy, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1704-:d:1369160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.