IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1677-d1368485.html
   My bibliography  Save this article

New Approach for Validation of a Directional Overcurrent Protection Scheme in a Ring Distribution Network with Integration of Distributed Energy Resources Using Digital Twins

Author

Listed:
  • Eduardo Gómez-Luna

    (Grupo de Investigación en Alta Tensión-GRALTA, Universidad del Valle, Cali 760015, Colombia)

  • Jorge De La Cruz

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Juan C. Vasquez

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

Abstract

This article introduces a new approach for validating directional overcurrent protection schemes in ring-topology electrical distribution systems with distributed energy resources (DERs). The proposed protection scheme incorporates overcurrent and directional functions and addresses DER-induced challenges such as variable short circuit levels. This study employs real-time and offline simulations to evaluate the performance of the protection coordination scheme using a digital twin under DER-supplied loads. The utilization of digital twins offers the possibility to simulate different scenarios, providing real-time responses to dynamic changes and allowing for informed decision-making in response to disturbances or faults. This study aims to present a new approach to validate the performance of the proposed protection scheme when the load is entirely supplied by DERs, highlighting issues such as false trips and protection system blindness resulting from changes in short circuit currents. The results show a breakdown in the coordination of the protection scheme during the fault conditions, demonstrating the effectiveness of digital twins in validating the protection scheme’s performance. Performing an analysis in the electromagnetic transient (EMT) domain improves the validation and refines the results.

Suggested Citation

  • Eduardo Gómez-Luna & Jorge De La Cruz & Juan C. Vasquez, 2024. "New Approach for Validation of a Directional Overcurrent Protection Scheme in a Ring Distribution Network with Integration of Distributed Energy Resources Using Digital Twins," Energies, MDPI, vol. 17(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1677-:d:1368485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eduardo Gómez-Luna & John E. Candelo-Becerra & Juan C. Vasquez, 2023. "A New Digital Twins-Based Overcurrent Protection Scheme for Distributed Energy Resources Integrated Distribution Networks," Energies, MDPI, vol. 16(14), pages 1-23, July.
    2. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeferson Lopez Alzate & Eduardo Gómez-Luna & Juan C. Vasquez, 2024. "Innovative Microgrid Services and Applications in Electric Grids: Enhancing Energy Management and Grid Integration," Energies, MDPI, vol. 17(22), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David R. Garibello-Narváez & Eduardo Gómez-Luna & Juan C. Vasquez, 2024. "Performance Evaluation of Distance Relay Operation in Distribution Systems with Integrated Distributed Energy Resources," Energies, MDPI, vol. 17(18), pages 1-17, September.
    2. Hamed Rezapour & Sadegh Jamali & Alireza Bahmanyar, 2023. "Review on Artificial Intelligence-Based Fault Location Methods in Power Distribution Networks," Energies, MDPI, vol. 16(12), pages 1-18, June.
    3. Magnus Værbak & Joy Dalmacio Billanes & Bo Nørregaard Jørgensen & Zheng Ma, 2024. "A Digital Twin Framework for Simulating Distributed Energy Resources in Distribution Grids," Energies, MDPI, vol. 17(11), pages 1-36, May.
    4. Mohamed Numair & Ahmed A. Aboushady & Felipe Arraño-Vargas & Mohamed E. Farrag & Eyad Elyan, 2023. "Fault Detection and Localisation in LV Distribution Networks Using a Smart Meter Data-Driven Digital Twin," Energies, MDPI, vol. 16(23), pages 1-24, November.
    5. Yeferson Lopez Alzate & Eduardo Gómez-Luna & Juan C. Vasquez, 2024. "Innovative Microgrid Services and Applications in Electric Grids: Enhancing Energy Management and Grid Integration," Energies, MDPI, vol. 17(22), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1677-:d:1368485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.