IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2503-d1400255.html
   My bibliography  Save this article

A Digital Twin Framework for Simulating Distributed Energy Resources in Distribution Grids

Author

Listed:
  • Magnus Værbak

    (SDU Center for Energy Informatics, The Maersk Mc-Kinney Moller Institute, The Faculty of Engineering, University of Southern Denmark, 5230 Odense M, Denmark)

  • Joy Dalmacio Billanes

    (SDU Center for Energy Informatics, The Maersk Mc-Kinney Moller Institute, The Faculty of Engineering, University of Southern Denmark, 5230 Odense M, Denmark)

  • Bo Nørregaard Jørgensen

    (SDU Center for Energy Informatics, The Maersk Mc-Kinney Moller Institute, The Faculty of Engineering, University of Southern Denmark, 5230 Odense M, Denmark)

  • Zheng Ma

    (SDU Center for Energy Informatics, The Maersk Mc-Kinney Moller Institute, The Faculty of Engineering, University of Southern Denmark, 5230 Odense M, Denmark)

Abstract

As the adoption of distributed energy resources (DERs) grows, the future of electricity distribution systems is confronted with significant challenges. These challenges arise from the transformation of consumers into prosumers and the resulting increased system complexity, leading to more pressure on the distribution grids. To address this complexity, a Digital Twin framework is designed to simulate DERs within distribution grids effectively. This framework is structured around four key modules: DERs, the electricity distribution grid, the energy management system, and the consumers. It incorporates a communication interface to facilitate interactions among these modules and includes considerations for grid topologies and demand-side configurations. The framework allows for the exploration of various DER adoption rates and capacities. The validation of this framework involves case studies on two Danish distribution grids with scenarios incorporating rooftop photovoltaic (PV) systems, batteries, and electric vehicles, considering different combinations of these technologies. The findings demonstrate the framework’s ability to depict the states of the grid, PV systems, electric vehicles, and battery systems with a 10 min resolution over periods ranging from a day to over a decade.

Suggested Citation

  • Magnus Værbak & Joy Dalmacio Billanes & Bo Nørregaard Jørgensen & Zheng Ma, 2024. "A Digital Twin Framework for Simulating Distributed Energy Resources in Distribution Grids," Energies, MDPI, vol. 17(11), pages 1-36, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2503-:d:1400255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Jiahang & Yang, Rufan & Hui, Shu-Yuen Ron & Nguyen, Hung D., 2024. "Dual Digital Twin: Cloud–edge collaboration with Lyapunov-based incremental learning in EV batteries," Applied Energy, Elsevier, vol. 355(C).
    2. Eduardo Gómez-Luna & John E. Candelo-Becerra & Juan C. Vasquez, 2023. "A New Digital Twins-Based Overcurrent Protection Scheme for Distributed Energy Resources Integrated Distribution Networks," Energies, MDPI, vol. 16(14), pages 1-23, July.
    3. Nisitha Padmawansa & Kosala Gunawardane & Samaneh Madanian & Amanullah Maung Than Oo, 2023. "Battery Energy Storage Capacity Estimation for Microgrids Using Digital Twin Concept," Energies, MDPI, vol. 16(12), pages 1-18, June.
    4. Viktor Rjabtšikov & Anton Rassõlkin & Karolina Kudelina & Ants Kallaste & Toomas Vaimann, 2023. "Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis," Energies, MDPI, vol. 16(19), pages 1-17, October.
    5. Tolga Yalçin & Pol Paradell Solà & Paschalia Stefanidou-Voziki & Jose Luis Domínguez-García & Tugce Demirdelen, 2023. "Exploiting Digitalization of Solar PV Plants Using Machine Learning: Digital Twin Concept for Operation," Energies, MDPI, vol. 16(13), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Gómez-Luna & Jorge De La Cruz & Juan C. Vasquez, 2024. "New Approach for Validation of a Directional Overcurrent Protection Scheme in a Ring Distribution Network with Integration of Distributed Energy Resources Using Digital Twins," Energies, MDPI, vol. 17(7), pages 1-19, April.
    2. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    3. David R. Garibello-Narváez & Eduardo Gómez-Luna & Juan C. Vasquez, 2024. "Performance Evaluation of Distance Relay Operation in Distribution Systems with Integrated Distributed Energy Resources," Energies, MDPI, vol. 17(18), pages 1-17, September.
    4. Dorotea Dimitrova Angelova & Diego Carmona Fernández & Manuel Calderón Godoy & Juan Antonio Álvarez Moreno & Juan Félix González González, 2024. "A Review on Digital Twins and Its Application in the Modeling of Photovoltaic Installations," Energies, MDPI, vol. 17(5), pages 1-29, March.
    5. Xiaotong Dong & Jing Huang & Ningzhao Luo & Wenshan Hu & Zhongcheng Lei, 2023. "Design and Implementation of Digital Twin Diesel Generator Systems," Energies, MDPI, vol. 16(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2503-:d:1400255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.