IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1574-d1363880.html
   My bibliography  Save this article

Evaluation of Technological Configurations of Residential Energy Systems Considering Bidirectional Power Supply by Vehicles in Japan

Author

Listed:
  • Jun Osawa

    (Department Management Systems, College of Informatics and Human Communication, Kanazawa Institute of Technology, Nonoichi 921-8501, Japan)

Abstract

To reduce CO 2 emissions in the residential and transportation sectors, distributed energy technologies, such as photovoltaic power generation (PV), stationary storage batteries (SBs), battery electric vehicles (BEVs), and vehicle-to-home (V2H) systems, are expected to be introduced. The objective of this study was to analyze the impact of the installed capacity of PV and SB, the type of vehicle, and their combination on the economic and environmental performance of the total energy consumption of residences and vehicles. Thus, this study developed a model to optimize the technological configuration of residential energy systems, including various vehicle types and driving patterns. The simulation results showed that it is more economically and environmentally efficient to install a BEV and a V2H system in households with longer parking times at the residence and to install an SB in addition to these technologies in households with shorter parking times at the residence. Furthermore, comparing a gasoline vehicle and an SB, the most economical combination, with a BEV and a V2H system and with a BEV, a V2H system, and an SB, estimated the carbon tax rate necessary for cost equivalence. The result indicated that the carbon tax rate needs to be increased from its current level.

Suggested Citation

  • Jun Osawa, 2024. "Evaluation of Technological Configurations of Residential Energy Systems Considering Bidirectional Power Supply by Vehicles in Japan," Energies, MDPI, vol. 17(7), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1574-:d:1363880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1574/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1574/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Osawa, 2023. "Portfolio Analysis of Clean Energy Vehicles in Japan Considering Copper Recycling," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    2. Erdinc, Ozan & Paterakis, Nikolaos G. & Pappi, Iliana N. & Bakirtzis, Anastasios G. & Catalão, João P.S., 2015. "A new perspective for sizing of distributed generation and energy storage for smart households under demand response," Applied Energy, Elsevier, vol. 143(C), pages 26-37.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    2. Gruber, J.K. & Huerta, F. & Matatagui, P. & Prodanović, M., 2015. "Advanced building energy management based on a two-stage receding horizon optimization," Applied Energy, Elsevier, vol. 160(C), pages 194-205.
    3. Nordgård-Hansen, Ellen & Kishor, Nand & Midttømme, Kirsti & Risinggård, Vetle Kjær & Kocbach, Jan, 2022. "Case study on optimal design and operation of detached house energy system: Solar, battery, and ground source heat pump," Applied Energy, Elsevier, vol. 308(C).
    4. Ihsan, Abbas & Jeppesen, Matthew & Brear, Michael J., 2019. "Impact of demand response on the optimal, techno-economic performance of a hybrid, renewable energy power plant," Applied Energy, Elsevier, vol. 238(C), pages 972-984.
    5. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    6. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).
    7. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    8. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.
    9. Tómasson, Egill & Hesamzadeh, Mohammad Reza & Wolak, Frank A., 2020. "Optimal offer-bid strategy of an energy storage portfolio: A linear quasi-relaxation approach," Applied Energy, Elsevier, vol. 260(C).
    10. Yu, Mengmeng & Lu, Renzhi & Hong, Seung Ho, 2016. "A real-time decision model for industrial load management in a smart grid," Applied Energy, Elsevier, vol. 183(C), pages 1488-1497.
    11. Jelena Lukić & Miloš Radenković & Marijana Despotović-Zrakić & Aleksandra Labus & Zorica Bogdanović, 2017. "Supply chain intelligence for electricity markets: A smart grid perspective," Information Systems Frontiers, Springer, vol. 19(1), pages 91-107, February.
    12. Jie Ji & Xin Xia & Wei Ni & Kailiang Teng & Chunqiong Miao & Yaodong Wang & Tony Roskilly, 2019. "An Experimental and Simulation Study on Optimisation of the Operation of a Distributed Power Generation System with Energy Storage—Meeting Dynamic Household Electricity Demand," Energies, MDPI, vol. 12(6), pages 1-16, March.
    13. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    14. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    15. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    16. Yu, Mengmeng & Hong, Seung Ho, 2016. "Supply–demand balancing for power management in smart grid: A Stackelberg game approach," Applied Energy, Elsevier, vol. 164(C), pages 702-710.
    17. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    18. Ye Liu & Yiwei Zhong & Chaowei Tang, 2023. "Optimal Sizing of Photovoltaic/Energy Storage Hybrid Power Systems: Considering Output Characteristics and Uncertainty Factors," Energies, MDPI, vol. 16(14), pages 1-23, July.
    19. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    20. Ren, Zhengen & Paevere, Phillip & Chen, Dong, 2019. "Feasibility of off-grid housing under current and future climates," Applied Energy, Elsevier, vol. 241(C), pages 196-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1574-:d:1363880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.