IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1264-d1352452.html
   My bibliography  Save this article

Strategic Model for Charging a Fleet of Electric Vehicles with Energy from Renewable Energy Sources

Author

Listed:
  • Jacek Caban

    (Department of Automation, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland)

  • Arkadiusz Małek

    (Department of Transportation and Informatics, WSEI University in Lublin, Projektowa 4, 20-209 Lublin, Poland)

  • Branislav Šarkan

    (Department of Road and Urban Transport, Faculty of Operation and Economics of Transport and Communications, University of Žilina, Univerzitná 8215/1, 01026 Žilina, Slovakia)

Abstract

The ever-growing number of electric vehicles requires increasing amounts of energy to charge their traction batteries. Electric vehicles are the most ecological when the energy for charging them comes from renewable energy sources. Obtaining electricity from renewable sources such as photovoltaic systems is also a way to reduce the operating costs of an electric vehicle. However, to produce cheap electricity from renewable energy sources, you first need to invest in the construction of a photovoltaic system. The article presents a strategic model for charging a fleet of electric vehicles with energy from photovoltaic systems. The model is useful for sizing a planned photovoltaic system to the energy needs of a vehicle fleet. It uses the Metalog family of probability distributions to determine the probability of producing a given amount of energy needed to power electric vehicle chargers. Using the model, it is possible to determine the percentage of energy from photovoltaic systems in the total energy needed to charge a vehicle fleet. The research was carried out on real data from an operating photovoltaic system with a peak power of 50 kWp. The approach presented in the strategic model takes into account the geographical and climatic context related to the location of the photovoltaic system. The model can be used for various renewable energy sources and different sizes of vehicle fleets with different electricity demands to charge their batteries. The presented model can be used to manage the energy produced both at the design stage of the photovoltaic system and during its operation.

Suggested Citation

  • Jacek Caban & Arkadiusz Małek & Branislav Šarkan, 2024. "Strategic Model for Charging a Fleet of Electric Vehicles with Energy from Renewable Energy Sources," Energies, MDPI, vol. 17(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1264-:d:1352452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Rizalul Wahid & Bentang Arief Budiman & Endra Joelianto & Muhammad Aziz, 2021. "A Review on Drive Train Technologies for Passenger Electric Vehicles," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Anna Wojewnik-Filipkowska & Paweł Filipkowski & Olaf Frąckowiak, 2023. "Analysis of Investments in RES Based on the Example of Photovoltaic Panels in Conditions of Uncertainty and Risk—A Case Study," Energies, MDPI, vol. 16(7), pages 1-15, March.
    3. Domenico Palladino & Nicolandrea Calabrese, 2023. "Energy Planning of Renewable Energy Sources in an Italian Context: Energy Forecasting Analysis of Photovoltaic Systems in the Residential Sector," Energies, MDPI, vol. 16(7), pages 1-28, March.
    4. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    5. Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Andrzej Marciniak & Piotr Ignaciuk, 2023. "A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family," Energies, MDPI, vol. 16(13), pages 1-16, June.
    6. Karol Tucki & Olga Orynycz & Agnieszka Dudziak, 2022. "The Impact of the Available Infrastructure on the Electric Vehicle Market in Poland and in EU Countries," IJERPH, MDPI, vol. 19(24), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Andrzej Marciniak & Piotr Ignaciuk, 2023. "A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. Edgar Sokolovskij & Arkadiusz Małek & Jacek Caban & Agnieszka Dudziak & Jonas Matijošius & Andrzej Marciniak, 2023. "Selection of a Photovoltaic Carport Power for an Electric Vehicle," Energies, MDPI, vol. 16(7), pages 1-16, March.
    3. Angel Recalde & Ricardo Cajo & Washington Velasquez & Manuel S. Alvarez-Alvarado, 2024. "Machine Learning and Optimization in Energy Management Systems for Plug-In Hybrid Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 17(13), pages 1-39, June.
    4. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    5. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    6. Zhou, Jianli & Wu, Yunna & Tao, Yao & Gao, Jianwei & Zhong, Zhiming & Xu, Chuanbo, 2021. "Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China," Energy, Elsevier, vol. 225(C).
    7. Tong Wang & Wei Liang, 2024. "Five-Stage Fast Charging of Lithium-Ion Batteries Based on Lamb Waves Depolarization," Energies, MDPI, vol. 17(12), pages 1-15, June.
    8. Jun Dong & Anyuan Fu & Yao Liu & Shilin Nie & Peiwen Yang & Linpeng Nie, 2019. "Two-Stage Optimization Model for Two-Side Daily Reserve Capacity of a Power System Considering Demand Response and Wind Power Consumption," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    9. Emad Awada & Eyad Radwan & Suzan Abed & Akram Al-Mahrouk, 2024. "Economic Analysis and Design of Sustainable Solar Electric Vehicle Carport at Applied Science Private University in Jordan," Energies, MDPI, vol. 17(17), pages 1-20, August.
    10. Sharma, Reema Bera & Majumdar, Bandhan Bandhu & Maitra, Bhargab, 2024. "Commuter and non-commuter preferences for plug-in hybrid electric vehicle: A case study of Delhi and Kolkata, India," Research in Transportation Economics, Elsevier, vol. 103(C).
    11. Robby Dwianto Widyantara & Muhammad Adnan Naufal & Poetro Lebdo Sambegoro & Ignatius Pulung Nurprasetio & Farid Triawan & Djati Wibowo Djamari & Asep Bayu Dani Nandiyanto & Bentang Arief Budiman & Muh, 2021. "Low-Cost Air-Cooling System Optimization on Battery Pack of Electric Vehicle," Energies, MDPI, vol. 14(23), pages 1-14, November.
    12. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    13. Beata Hysa & Anna Mularczyk, 2024. "PESTEL Analysis of the Photovoltaic Market in Poland—A Systematic Review of Opportunities and Threats," Resources, MDPI, vol. 13(10), pages 1-29, September.
    14. Chiara Bordin & Asgeir Tomasgard, 2021. "Behavioural Change in Green Transportation: Micro-Economics Perspectives and Optimization Strategies," Energies, MDPI, vol. 14(13), pages 1-20, June.
    15. Henryk Wojtaszek & Ireneusz Miciuła & Dagmara Modrzejewska & Adam Stecyk & Mariusz Sikora & Agnieszka Wójcik-Czerniawska & Małgorzata Smolarek & Anna Kowalczyk & Małgorzata Chojnacka, 2024. "Energy Policy until 2050—Comparative Analysis between Poland and Germany," Energies, MDPI, vol. 17(2), pages 1-36, January.
    16. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Qin, Yanbo & Zhang, Jing & Tang, Saiqiu & Wang, Yuwei & Liu, Yan & Zhou, Lin, 2023. "Flexibility improvement and stochastic multi-scenario hybrid optimization for an integrated energy system with high-proportion renewable energy," Energy, Elsevier, vol. 263(PB).
    17. Zhang, Haifeng & Tian, Ming & Zhang, Cong & Wang, Bin & Wang, Dai, 2021. "A systematic solution to quantify economic values of vehicle grid integration," Energy, Elsevier, vol. 232(C).
    18. Wei, Shaoyuan & Murgovski, Nikolce & Jiang, Jiuchun & Hu, Xiaosong & Zhang, Weige & Zhang, Caiping, 2020. "Stochastic optimization of a stationary energy storage system for a catenary-free tramline," Applied Energy, Elsevier, vol. 280(C).
    19. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.
    20. Xingxing Wang & Peilin Ye & Yujie Zhang & Hongjun Ni & Yelin Deng & Shuaishuai Lv & Yinnan Yuan & Yu Zhu, 2022. "Parameter Optimization Method for Power System of Medium-Sized Bus Based on Orthogonal Test," Energies, MDPI, vol. 15(19), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1264-:d:1352452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.