IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1214-d1350573.html
   My bibliography  Save this article

Analysis of Peak Demand Reduction and Energy Saving in a Mixed-Use Community through Urban Building Energy Modeling

Author

Listed:
  • Wenxian Zhao

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Zhang Deng

    (School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411100, China)

  • Yanfei Ji

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Chengcheng Song

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Yue Yuan

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Zhiyuan Wang

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Yixing Chen

    (College of Civil Engineering, Hunan University, Changsha 410082, China
    Key Laboratory of Building Safety and Energy Efficiency of Ministry of Education, Hunan University, Changsha 410082, China)

Abstract

Energy saving in buildings is essential as buildings’ operational energy use constitutes 30% of global energy consumption. Urban building energy modeling (UBEM) effectively understands urban energy consumption. This paper applied UBEM to assess the potential of peak demand reduction and energy saving in a mixed-use community, using 955 residential buildings, 35 office buildings and 7 hotels in Shenzhen, China, as a case study. The building type and period were collected based on the GIS dataset. Then, the baseline models were generated by the UBEM tool—AutoBPS. Five scenarios were analyzed: retrofit-window, retrofit-air conditioner (AC), retrofit-lighting, rooftop photovoltaic (PV), and demand response. The five scenarios replaced the windows, enhanced the AC, upgraded the lighting, covered 60% of the roof area with PV, and had a temperature reset from 17:00 to 23:00, respectively. The results show that using retrofit-windows is the most effective scenario for reducing peak demand at 19.09%, and PV reduces energy use intensity (EUI) best at 29.96%. Demand response is recommended when further investment is not desired. Retrofit-lighting is suggested for its low-cost, low-risk investment, with the payback period (PBP) not exceeding 4.54 years. When the investment is abundant, retrofit-windows are recommended for public buildings, while PV is recommended for residential buildings. The research might provide practical insights into energy policy formulation.

Suggested Citation

  • Wenxian Zhao & Zhang Deng & Yanfei Ji & Chengcheng Song & Yue Yuan & Zhiyuan Wang & Yixing Chen, 2024. "Analysis of Peak Demand Reduction and Energy Saving in a Mixed-Use Community through Urban Building Energy Modeling," Energies, MDPI, vol. 17(5), pages 1-23, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1214-:d:1350573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amin, Amin & Kem, Oudom & Gallegos, Pablo & Chervet, Philipp & Ksontini, Feirouz & Mourshed, Monjur, 2022. "Demand response in buildings: Unlocking energy flexibility through district-level electro-thermal simulation," Applied Energy, Elsevier, vol. 305(C).
    2. Utama, Christian & Troitzsch, Sebastian & Thakur, Jagruti, 2021. "Demand-side flexibility and demand-side bidding for flexible loads in air-conditioned buildings," Applied Energy, Elsevier, vol. 285(C).
    3. Mikkola, Jani & Lund, Peter D., 2014. "Models for generating place and time dependent urban energy demand profiles," Applied Energy, Elsevier, vol. 130(C), pages 256-264.
    4. Yanfei Ji & Guangchen Li & Fanghan Su & Yixing Chen & Rongpeng Zhang, 2023. "Retrofit Analysis of City-Scale Residential Buildings in the Hot Summer and Cold Winter Climate Zone," Energies, MDPI, vol. 16(17), pages 1-19, August.
    5. Triolo, Ryan C. & Rajagopal, Ram & Wolak, Frank A. & de Chalendar, Jacques A., 2023. "Estimating cooling demand flexibility in a district energy system using temperature set point changes from selected buildings," Applied Energy, Elsevier, vol. 336(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    2. Ajla Mehinovic & Matej Zajc & Nermin Suljanovic, 2023. "Interpretation and Quantification of the Flexibility Sources Location on the Flexibility Service in the Distribution Grid," Energies, MDPI, vol. 16(2), pages 1-18, January.
    3. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
    4. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    5. Amin, Amin & Mourshed, Monjur, 2024. "Weather and climate data for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    7. Dong, Lianxin & Wu, Qing & Hong, Juhua & Wang, Zhihua & Fan, Shuai & He, Guangyu, 2023. "An adaptive decentralized regulation strategy for the cluster with massive inverter air conditionings," Applied Energy, Elsevier, vol. 330(PA).
    8. Abdellatif Soussi & Enrico Zero & Alessandro Bozzi & Roberto Sacile, 2024. "Enhancing Energy Systems and Rural Communities through a System of Systems Approach: A Comprehensive Review," Energies, MDPI, vol. 17(19), pages 1-43, October.
    9. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2017. "Impact of service sector loads on renewable resource integration," Applied Energy, Elsevier, vol. 205(C), pages 1311-1326.
    10. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
    11. Song, Yuguang & Xia, Mingchao & Chen, Qifang & Chen, Fangjian, 2023. "A data-model fusion dispatch strategy for the building energy flexibility based on the digital twin," Applied Energy, Elsevier, vol. 332(C).
    12. Mikkola, Jani & Lund, Peter D., 2016. "Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes," Energy, Elsevier, vol. 112(C), pages 364-375.
    13. Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
    14. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    15. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    16. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    17. Mansouri, Seyed Amir & Nematbakhsh, Emad & Jordehi, Ahmad Rezaee & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco, 2023. "An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination," Applied Energy, Elsevier, vol. 341(C).
    18. Job Taminiau & John Byrne & Jongkyu Kim & Min‐whi Kim & Jeongseok Seo, 2021. "Infrastructure‐scale sustainable energy planning in the cityscape: Transforming urban energy metabolism in East Asia," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    19. Gharibvand, Hossein & Gharehpetian, G.B. & Anvari-Moghaddam, A., 2024. "A survey on microgrid flexibility resources, evaluation metrics and energy storage effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    20. Hernández, José L. & de Miguel, Ignacio & Vélez, Fredy & Vasallo, Ali, 2024. "Challenges and opportunities in European smart buildings energy management: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1214-:d:1350573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.