IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p842-d1337081.html
   My bibliography  Save this article

Analysis of Variability in Electric Power Consumption: A Methodology for Setting Time-Differentiated Tariffs

Author

Listed:
  • Javier E. Duarte

    (EM&D Research Group, Department of Electrical and Electronic Engineering, Faculty of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia)

  • Javier Rosero-Garcia

    (EM&D Research Group, Department of Electrical and Electronic Engineering, Faculty of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia)

  • Oscar Duarte

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, Universidad Nacional de Colombia, Bogotá 111321, Colombia)

Abstract

The increasing concern for environmental conservation has spurred government initiatives towards energy efficiency. One of the key research areas in this regard is demand response, particularly focusing on differential pricing initiatives such as Time-of-Use (ToU). Differential tariffs are typically designed based on mathematical or statistical models analyzing historical electricity price and consumption data. This study proposes a methodology for identifying time intervals suitable for implementing ToU energy tariffs, achieved by analyzing electric power demand variability to estimate demand flexibility potential. The methodology transforms consumption data into variation via the coefficient of variation and, then, employs k-means data analysis techniques and the a priori algorithm. Tested with real data from smart meters in the Colombian electrical system, the methodology successfully identified time intervals with potential for establishing ToU tariffs. Additionally, no direct relationship was found between external variables such as socioeconomic level, user type, climate, and consumption variability. Finally, it was observed that user behavior concerning consumption variability could be categorized into two types of days: weekdays and non-working days.

Suggested Citation

  • Javier E. Duarte & Javier Rosero-Garcia & Oscar Duarte, 2024. "Analysis of Variability in Electric Power Consumption: A Methodology for Setting Time-Differentiated Tariffs," Energies, MDPI, vol. 17(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:842-:d:1337081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Ran & Wang, Zhimin & Gu, Chenghong & Li, Furong & Wu, Hao, 2016. "A novel time-of-use tariff design based on Gaussian Mixture Model," Applied Energy, Elsevier, vol. 162(C), pages 1530-1536.
    2. Yang, Liu & Dong, Ciwei & Wan, C.L. Johnny & Ng, Chi To, 2013. "Electricity time-of-use tariff with consumer behavior consideration," International Journal of Production Economics, Elsevier, vol. 146(2), pages 402-410.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Weiwei & Li, Lin, 2018. "A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors," International Journal of Production Economics, Elsevier, vol. 201(C), pages 75-88.
    2. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    3. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    4. Li, Na & Okur, Özge, 2023. "Economic analysis of energy communities: Investment options and cost allocation," Applied Energy, Elsevier, vol. 336(C).
    5. Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, vol. 13(14), pages 1-21, July.
    6. Hortay, Olivér & Kökény, László, 2020. "A villamosenergia-fogyasztás elhalasztásával kapcsolatos lakossági attitűd felmérése Magyarországon [A survey of popular attitudes to deferment of electricity consumption in Hungary]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 657-687.
    7. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    8. Xinan Zhang & Ruigang Wang & Jie Bao, 2018. "A Novel Distributed Economic Model Predictive Control Approach for Building Air-Conditioning Systems in Microgrids," Mathematics, MDPI, vol. 6(4), pages 1-21, April.
    9. Sulaima, Mohamad Fani & Dahlan, Nofri Yenita & Yasin, Zuhaila Mat & Rosli, Marlinda Mohd & Omar, Zulkiflee & Hassan, Mohammad Yusri, 2019. "A review of electricity pricing in peninsular Malaysia: Empirical investigation about the appropriateness of Enhanced Time of Use (ETOU) electricity tariff," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 348-367.
    10. Chen Wang & Kaile Zhou & Lanlan Li & Shanlin Yang, 2018. "Multi-agent simulation-based residential electricity pricing schemes design and user selection decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1309-1327, February.
    11. Sharma, A. & Bhakar, R. & Tiwari, H.P. & Li, R. & Li, F., 2017. "A novel hierarchical contribution factor based model for distribution use-of-system charges," Applied Energy, Elsevier, vol. 208(C), pages 996-1006.
    12. Venizelou, Venizelos & Philippou, Nikolas & Hadjipanayi, Maria & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2018. "Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management," Energy, Elsevier, vol. 142(C), pages 633-646.
    13. Parag, Yael, 2021. "Which factors influence large households’ decision to join a time-of-use program? The interplay between demand flexibility, personal benefits and national benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Jaehyun Lee & Eunjung Lee & Jinho Kim, 2020. "Electric Vehicle Charging and Discharging Algorithm Based on Reinforcement Learning with Data-Driven Approach in Dynamic Pricing Scheme," Energies, MDPI, vol. 13(8), pages 1-18, April.
    15. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
    16. Li, Na & Hakvoort, Rudi A. & Lukszo, Zofia, 2021. "Cost allocation in integrated community energy systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).
    18. Peipei You & Sitao Li & Chengren Li & Chao Zhang & Hailang Zhou & Huicai Wang & Huiru Zhao & Yihang Zhao, 2023. "Price-Based Demand Response: A Three-Stage Monthly Time-of-Use Tariff Optimization Model," Energies, MDPI, vol. 16(23), pages 1-20, November.
    19. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    20. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:842-:d:1337081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.