IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp1530-1536.html
   My bibliography  Save this article

A novel time-of-use tariff design based on Gaussian Mixture Model

Author

Listed:
  • Li, Ran
  • Wang, Zhimin
  • Gu, Chenghong
  • Li, Furong
  • Wu, Hao

Abstract

This paper proposes a novel method to design feasible Time-of-Use (ToU) tariffs for domestic customers from flat rate tariffs by clustering techniques. The method is dedicated to designing the fundamental window patterns of ToU tariffs rather than optimising exact prices for each settlement period. It makes use of Gaussian Mixture Model clustering technique to group half-hour interval flat rate tariffs within a day into clusters to determine ToU tariffs. Two groups of ToU are designed following the variations in energy prices and system loading demand respectively. With a number of price-oriented and load-oriented ToU tariffs, the investigation is further carried out to explore the effects of these ToU tariffs on domestic demand response (DR), especially in terms of energy cost reduction and peak shaving. The DR in this paper is assumed to be enabled by household storage battery and the objective of the DR in response to each ToU tariff is to minimise the electricity bills for end customers and/or mitigate network pressures. An example study in the UK case is also carried out to demonstrate the effectiveness of the proposed methods.

Suggested Citation

  • Li, Ran & Wang, Zhimin & Gu, Chenghong & Li, Furong & Wu, Hao, 2016. "A novel time-of-use tariff design based on Gaussian Mixture Model," Applied Energy, Elsevier, vol. 162(C), pages 1530-1536.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1530-1536
    DOI: 10.1016/j.apenergy.2015.02.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    2. Henley, Andrew & Peirson, John, 1994. "Time-of-use electricity pricing : Evidence from a British experiment," Economics Letters, Elsevier, vol. 45(3), pages 421-426.
    3. Orans, Ren & Woo, C.K. & Horii, Brian & Chait, Michele & DeBenedictis, Andrew, 2010. "Electricity Pricing for Conservation and Load Shifting," The Electricity Journal, Elsevier, vol. 23(3), pages 7-14, April.
    4. Massimo, Filippini, 2011. "Short- and long-run time-of-use price elasticities in Swiss residential electricity demand," Energy Policy, Elsevier, vol. 39(10), pages 5811-5817, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Venizelou, Venizelos & Philippou, Nikolas & Hadjipanayi, Maria & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2018. "Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management," Energy, Elsevier, vol. 142(C), pages 633-646.
    2. Gong, Chengzhu & Tang, Kai & Zhu, Kejun & Hailu, Atakelty, 2016. "An optimal time-of-use pricing for urban gas: A study with a multi-agent evolutionary game-theoretic perspective," Applied Energy, Elsevier, vol. 163(C), pages 283-294.
    3. Saffari, Mohammad & de Gracia, Alvaro & Fernández, Cèsar & Belusko, Martin & Boer, Dieter & Cabeza, Luisa F., 2018. "Optimized demand side management (DSM) of peak electricity demand by coupling low temperature thermal energy storage (TES) and solar PV," Applied Energy, Elsevier, vol. 211(C), pages 604-616.
    4. Wang, Zhimin & Gu, Chenghong & Li, Furong, 2018. "Flexible operation of shared energy storage at households to facilitate PV penetration," Renewable Energy, Elsevier, vol. 116(PA), pages 438-446.
    5. Liao, Wei & Xiao, Fu & Li, Yanxue & Zhang, Hanbei & Peng, Jinqing, 2024. "A comparative study of demand-side energy management strategies for building integrated photovoltaics-battery and electric vehicles (EVs) in diversified building communities," Applied Energy, Elsevier, vol. 361(C).
    6. Zou, Bin & Peng, Jinqing & Li, Sihui & Li, Yi & Yan, Jinyue & Yang, Hongxing, 2022. "Comparative study of the dynamic programming-based and rule-based operation strategies for grid-connected PV-battery systems of office buildings," Applied Energy, Elsevier, vol. 305(C).
    7. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    8. Sulaima, Mohamad Fani & Dahlan, Nofri Yenita & Yasin, Zuhaila Mat & Rosli, Marlinda Mohd & Omar, Zulkiflee & Hassan, Mohammad Yusri, 2019. "A review of electricity pricing in peninsular Malaysia: Empirical investigation about the appropriateness of Enhanced Time of Use (ETOU) electricity tariff," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 348-367.
    9. Razavi, Rouzbeh & Gharipour, Amin & Fleury, Martin & Akpan, Ikpe Justice, 2019. "A practical feature-engineering framework for electricity theft detection in smart grids," Applied Energy, Elsevier, vol. 238(C), pages 481-494.
    10. Li, Pei-Hao & Pye, Steve & Keppo, Ilkka, 2020. "Using clustering algorithms to characterise uncertain long-term decarbonisation pathways," Applied Energy, Elsevier, vol. 268(C).
    11. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    12. Han, Zhezhe & Hossain, Md. Moinul & Wang, Yuwei & Li, Jian & Xu, Chuanlong, 2020. "Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network," Applied Energy, Elsevier, vol. 259(C).
    13. Cui, Weiwei & Li, Lin, 2018. "A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors," International Journal of Production Economics, Elsevier, vol. 201(C), pages 75-88.
    14. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    15. Wang, Zhiwen & Shen, Chen & Liu, Feng, 2018. "A conditional model of wind power forecast errors and its application in scenario generation," Applied Energy, Elsevier, vol. 212(C), pages 771-785.
    16. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    17. Charwand, Mansour & Gitizadeh, Mohsen, 2018. "Optimal TOU tariff design using robust intuitionistic fuzzy divergence based thresholding," Energy, Elsevier, vol. 147(C), pages 655-662.
    18. Kwonsik Song & Kyle Anderson & SangHyun Lee & Kaitlin T. Raimi & P. Sol Hart, 2020. "Non-Invasive Behavioral Reference Group Categorization Considering Temporal Granularity and Aggregation Level of Energy Use Data," Energies, MDPI, vol. 13(14), pages 1-21, July.
    19. Li, Kehua & Ma, Zhenjun & Robinson, Duane & Ma, Jun, 2018. "Identification of typical building daily electricity usage profiles using Gaussian mixture model-based clustering and hierarchical clustering," Applied Energy, Elsevier, vol. 231(C), pages 331-342.
    20. Yeong Huei Lee & Mugahed Amran & Yee Yong Lee & Ahmad Beng Hong Kueh & Siaw Fui Kiew & Roman Fediuk & Nikolai Vatin & Yuriy Vasilev, 2021. "Thermal Behavior and Energy Efficiency of Modified Concretes in the Tropical Climate: A Systemic Review," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    21. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    22. Azar, Elie & Al Ansari, Hamad, 2017. "Framework to investigate energy conservation motivation and actions of building occupants: The case of a green campus in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 190(C), pages 563-573.
    23. Debnath, Ramit & Bardhan, Ronita & Misra, Ashwin & Hong, Tianzhen & Rozite, Vida & Ramage, Michael H., 2022. "Lockdown impacts on residential electricity demand in India: A data-driven and non-intrusive load monitoring study using Gaussian mixture models," Energy Policy, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    2. Cappers, Peter A. & Todd-Blick, Annika, 2021. "Heterogeneity in own-price residential customer demand elasticities for electricity under time-of-use rates: Evidence from a randomized-control trial in the United States," Utilities Policy, Elsevier, vol. 73(C).
    3. Youn, Hyungho & Jin, Hyun Joung, 2016. "The effects of progressive pricing on household electricity use," Journal of Policy Modeling, Elsevier, vol. 38(6), pages 1078-1088.
    4. Heshmati, Almas, 2012. "Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market," IZA Discussion Papers 6637, Institute of Labor Economics (IZA).
    5. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    6. Gianfranco DI VAIO & Michele BATTISTI, 2010. "A Spatially-Filtered Mixture of Beta-Convergence Regression for EU Regions, 1980-2002," Regional and Urban Modeling 284100013, EcoMod.
    7. Yu Ding & Wayne S. DeSarbo & Dominique M. Hanssens & Kamel Jedidi & John G. Lynch & Donald R. Lehmann, 2020. "The past, present, and future of measurement and methods in marketing analysis," Marketing Letters, Springer, vol. 31(2), pages 175-186, September.
    8. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    9. Pennings, Joost M.E. & Garcia, Philip & Irwin, Scott H. & Good, Darrel L., 2003. "How To Group Market Participants? Heterogeneity In Hedging Behavior," 2003 Annual meeting, July 27-30, Montreal, Canada 21963, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Renato Cordeiro Amorim, 2016. "A Survey on Feature Weighting Based K-Means Algorithms," Journal of Classification, Springer;The Classification Society, vol. 33(2), pages 210-242, July.
    11. Salies, Evens, 2013. "Real-time pricing when some consumers resist in saving electricity," Energy Policy, Elsevier, vol. 59(C), pages 843-849.
    12. Stéphane Auray & Vincenzo Caponi & Benoît Ravel, 2019. "Price Elasticity of Electricity Demand in France," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 513, pages 91-103.
    13. Heungsun Hwang & Marc Tomiuk, 2010. "Fuzzy clusterwise quasi-likelihood generalized linear models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 255-270, December.
    14. Mekonnen, Alemu & Hassen, Sied & Jaime, Marcela & Toman, Michael & Zhang, Xiao-Bing, 2023. "The effect of information and subsidy on adoption of solar lanterns: An application of the BDM bidding mechanism in rural Ethiopia," Energy Economics, Elsevier, vol. 124(C).
    15. Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.
    16. Cédric Clastres & Olivier Rebenaque & Patrick Jochem, 2020. "Provision of Demand Response from the prosumers in multiple markets," Working Papers hal-03167446, HAL.
    17. Vincent Boucher & Carlo L. Del Bello & Fabrizio Panebianco & Thierry Verdier & Yves Zenou, 2023. "Education Transmission and Network Formation," Journal of Labor Economics, University of Chicago Press, vol. 41(1), pages 129-173.
    18. Thorsnes, Paul & Williams, John & Lawson, Rob, 2012. "Consumer responses to time varying prices for electricity," Energy Policy, Elsevier, vol. 49(C), pages 552-561.
    19. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    20. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:1530-1536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.