IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v201y2018icp75-88.html
   My bibliography  Save this article

A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors

Author

Listed:
  • Cui, Weiwei
  • Li, Lin

Abstract

Time-of-Use (TOU) pricing is an electricity demand response program with great potential to shave the peak demand and eliminate the need for extra power plants. It is necessary to distinguish which TOU program will lead to profitable results to the utility and customers when the customer behaviors and real work shifts are considered. In this paper, a game-theoretic approach is introduced to formulate the problem using a two-layer mathematical programming model, which is solved by the backward induction to gain the Nash-equilibrium. The case study results show that the equilibrium can create a win-win situation for the utility and customers, i.e. the utility increases its profit and the customer reduces its cost. Among different customers, the utility can focus on the customer with a small penalty factor and a large auxiliary coefficient, who prefers to join the TOU program. Even only a small portion of customers joins the TOU program, large improvements in utility's profit can be made.

Suggested Citation

  • Cui, Weiwei & Li, Lin, 2018. "A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors," International Journal of Production Economics, Elsevier, vol. 201(C), pages 75-88.
  • Handle: RePEc:eee:proeco:v:201:y:2018:i:c:p:75-88
    DOI: 10.1016/j.ijpe.2018.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527318301841
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2018.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, S.C. & Jin, Y.G. & Song, H.Y. & Yoon, Y.T., 2015. "Designing a critical peak pricing scheme for the profit maximization objective considering price responsiveness of customers," Energy, Elsevier, vol. 83(C), pages 521-531.
    2. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    3. Chen, Xi & Zhang, Hui & Zhang, Michael & Chen, Jing, 2017. "Optimal decisions in a retailer Stackelberg supply chain," International Journal of Production Economics, Elsevier, vol. 187(C), pages 260-270.
    4. Gong, Chengzhu & Tang, Kai & Zhu, Kejun & Hailu, Atakelty, 2016. "An optimal time-of-use pricing for urban gas: A study with a multi-agent evolutionary game-theoretic perspective," Applied Energy, Elsevier, vol. 163(C), pages 283-294.
    5. Amir Farshbaf-Geranmayeh & Masoud Rabbani & Ata Allah Taleizadeh, 2018. "Channel Coordination with Cooperative Advertising Considering Effect of Advertising on Willingness to Pay," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 509-525, February.
    6. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    7. Srinivasan, Dipti & Rajgarhia, Sanjana & Radhakrishnan, Bharat Menon & Sharma, Anurag & Khincha, H.P., 2017. "Game-Theory based dynamic pricing strategies for demand side management in smart grids," Energy, Elsevier, vol. 126(C), pages 132-143.
    8. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    9. Li, Ran & Wang, Zhimin & Gu, Chenghong & Li, Furong & Wu, Hao, 2016. "A novel time-of-use tariff design based on Gaussian Mixture Model," Applied Energy, Elsevier, vol. 162(C), pages 1530-1536.
    10. Yang, Liu & Dong, Ciwei & Wan, C.L. Johnny & Ng, Chi To, 2013. "Electricity time-of-use tariff with consumer behavior consideration," International Journal of Production Economics, Elsevier, vol. 146(2), pages 402-410.
    11. Wang, Yong & Li, Lin, 2014. "Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis," International Journal of Production Economics, Elsevier, vol. 156(C), pages 246-259.
    12. Lin, Boqiang & Liu, Jianghua, 2011. "Principles, effects and problems of differential power pricing policy for energy intensive industries in China," Energy, Elsevier, vol. 36(1), pages 111-118.
    13. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    14. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    15. Zugno, Marco & Morales, Juan Miguel & Pinson, Pierre & Madsen, Henrik, 2013. "A bilevel model for electricity retailers' participation in a demand response market environment," Energy Economics, Elsevier, vol. 36(C), pages 182-197.
    16. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    17. Ciwei Dong & Chi To Ng & T. C. E. Cheng, 2017. "Electricity Time-of-Use Tariff with Stochastic Demand," Production and Operations Management, Production and Operations Management Society, vol. 26(1), pages 64-79, January.
    18. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    2. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    3. Daeho Kim & Dong Gu Choi, 2023. "The aggregator’s contract design problem in the electricity demand response market," Operational Research, Springer, vol. 23(1), pages 1-47, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    2. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    3. Haider, Haider Tarish & See, Ong Hang & Elmenreich, Wilfried, 2016. "Residential demand response scheme based on adaptive consumption level pricing," Energy, Elsevier, vol. 113(C), pages 301-308.
    4. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    5. Charwand, Mansour & Gitizadeh, Mohsen, 2018. "Optimal TOU tariff design using robust intuitionistic fuzzy divergence based thresholding," Energy, Elsevier, vol. 147(C), pages 655-662.
    6. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    7. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.
    8. Gong, Chengzhu & Tang, Kai & Zhu, Kejun & Hailu, Atakelty, 2016. "An optimal time-of-use pricing for urban gas: A study with a multi-agent evolutionary game-theoretic perspective," Applied Energy, Elsevier, vol. 163(C), pages 283-294.
    9. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    10. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    11. Sulaima, Mohamad Fani & Dahlan, Nofri Yenita & Yasin, Zuhaila Mat & Rosli, Marlinda Mohd & Omar, Zulkiflee & Hassan, Mohammad Yusri, 2019. "A review of electricity pricing in peninsular Malaysia: Empirical investigation about the appropriateness of Enhanced Time of Use (ETOU) electricity tariff," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 348-367.
    12. Wang, Yong & Li, Lin, 2014. "Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis," International Journal of Production Economics, Elsevier, vol. 156(C), pages 246-259.
    13. Venizelou, Venizelos & Philippou, Nikolas & Hadjipanayi, Maria & Makrides, George & Efthymiou, Venizelos & Georghiou, George E., 2018. "Development of a novel time-of-use tariff algorithm for residential prosumer price-based demand side management," Energy, Elsevier, vol. 142(C), pages 633-646.
    14. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    15. Goulden, Murray & Spence, Alexa & Wardman, Jamie & Leygue, Caroline, 2018. "Differentiating ‘the user’ in DSR: Developing demand side response in advanced economies," Energy Policy, Elsevier, vol. 122(C), pages 176-185.
    16. An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).
    17. Cédric Clastres & Haikel Khalfallah, 2020. "Retailers' strategies facing demand response and markets interactions," Working Papers hal-03167543, HAL.
    18. Dababneh, Fadwa & Li, Lin & Sun, Zeyi, 2016. "Peak power demand reduction for combined manufacturing and HVAC system considering heat transfer characteristics," International Journal of Production Economics, Elsevier, vol. 177(C), pages 44-52.
    19. Amiri-Pebdani, Sima & Alinaghian, Mahdi & Safarzadeh, Soroush, 2022. "Time-Of-Use pricing in an energy sustainable supply chain with government interventions: A game theory approach," Energy, Elsevier, vol. 255(C).
    20. Li, Lanlan & Gong, Chengzhu & Tian, Shizhong & Jiao, Jianling, 2016. "The peak-shaving efficiency analysis of natural gas time-of-use pricing for residential consumers: Evidence from multi-agent simulation," Energy, Elsevier, vol. 96(C), pages 48-58.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:201:y:2018:i:c:p:75-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.