The Impact of Asymmetric Contact Resistance on the Operating Parameters of Thermoelectric Systems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zaher, M.H. & Abdelsalam, M.Y. & Cotton, J.S., 2020. "Study of the effects of axial conduction on the performance of thermoelectric generators integrated in a heat exchanger for waste heat recovery applications," Applied Energy, Elsevier, vol. 261(C).
- Darkwa, J. & Calautit, J. & Du, D. & Kokogianakis, G., 2019. "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, Elsevier, vol. 248(C), pages 688-701.
- Kim, Shiho, 2013. "Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators," Applied Energy, Elsevier, vol. 102(C), pages 1458-1463.
- Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
- Wang, Yiping & Li, Shuai & Xie, Xu & Deng, Yadong & Liu, Xun & Su, Chuqi, 2018. "Performance evaluation of an automotive thermoelectric generator with inserted fins or dimpled-surface hot heat exchanger," Applied Energy, Elsevier, vol. 218(C), pages 391-401.
- Buchalik, Ryszard & Nowak, Grzegorz & Nowak, Iwona, 2021. "Mathematical model of a thermoelectric system based on steady- and rapid-state measurements," Applied Energy, Elsevier, vol. 293(C).
- He, Wei & Guo, Rui & Takasu, Hiroki & Kato, Yukitaka & Wang, Shixue, 2019. "Performance optimization of common plate-type thermoelectric generator in vehicle exhaust power generation systems," Energy, Elsevier, vol. 175(C), pages 1153-1163.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Buchalik, Ryszard & Nowak, Grzegorz & Nowak, Iwona, 2021. "Mathematical model of a thermoelectric system based on steady- and rapid-state measurements," Applied Energy, Elsevier, vol. 293(C).
- He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
- Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
- Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
- Ma, Xiaonan & Shu, Gequn & Tian, Hua & Xu, Wen & Chen, Tianyu, 2019. "Performance assessment of engine exhaust-based segmented thermoelectric generators by length ratio optimization," Applied Energy, Elsevier, vol. 248(C), pages 614-625.
- Zhao, Yulong & Zhang, Guoyin & Wen, Lei & Wang, Shixue & Wang, Yulin & Li, Yanzhe & Ge, Minghui, 2024. "Experimental study on thermoelectric characteristics of intermediate fluid thermoelectric generator," Applied Energy, Elsevier, vol. 365(C).
- Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
- Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
- Ezzitouni, S. & Fernández-Yáñez, P. & Sánchez, L. & Armas, O., 2020. "Global energy balance in a diesel engine with a thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
- Yang, Wenlong & Zhu, WenChao & Li, Yang & Zhang, Leiqi & Zhao, Bo & Xie, Changjun & Yan, Yonggao & Huang, Liang, 2022. "Annular thermoelectric generator performance optimization analysis based on concentric annular heat exchanger," Energy, Elsevier, vol. 239(PB).
- Garud, Kunal Sandip & Seo, Jae-Hyeong & Bang, You-Ma & Pyo, Young-Dug & Cho, Chong-Pyo & Lee, Moo-Yeon & Lee, Dong-Yeon, 2022. "Energy, exergy, environmental sustainability and economic analyses for automotive thermoelectric generator system with various configurations," Energy, Elsevier, vol. 244(PA).
- Chen, Jie & Wang, Ruochen & Ding, Renkai & Luo, Ding, 2024. "Matching design and numerical optimization of automotive thermoelectric generator system applied to range-extended electric vehicle," Applied Energy, Elsevier, vol. 370(C).
- Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
- He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
- Sahoo, Rashmi Rekha & Karana, Dhruv Raj, 2020. "Effect of design shape factor on exergonic performance of a new modified extended-tapering segmented thermoelectric generator system," Energy, Elsevier, vol. 200(C).
- Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
- Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
- Kang, Yong-Kwon & Joung, Jaewon & Kim, Minseong & Jeong, Jae-Weon, 2023. "Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel," Renewable Energy, Elsevier, vol. 207(C), pages 298-308.
- Elghool, Ali & Basrawi, Firdaus & Ibrahim, Thamir Khalil & Ibrahim, Hassan & Ishak, M. & Hazwan bin Yusof, Mohd & Bagaber, Salem Abdullah, 2020. "Multi-objective optimization to enhance the performance of thermo-electric generator combined with heat pipe-heat sink under forced convection," Energy, Elsevier, vol. 208(C).
- Cózar, I.R. & Pujol, T. & Lehocky, M., 2018. "Numerical analysis of the effects of electrical and thermal configurations of thermoelectric modules in large-scale thermoelectric generators," Applied Energy, Elsevier, vol. 229(C), pages 264-280.
More about this item
Keywords
TEG; TEC; heat resistance; thermoelectric module; heat transfer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:3:p:599-:d:1327180. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.