IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p412-d1319034.html
   My bibliography  Save this article

Controlling Factors of Vertical Geochemical Variations in Hydrate-Rich Sediments at the Site GMGS5-W08 in the Qiongdongnan Basin, Northern South China Sea

Author

Listed:
  • Huaxin Liu

    (National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
    College of Geosciences, China University of Petroleum, Beijing 102249, China)

  • Meijun Li

    (National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
    College of Geosciences, China University of Petroleum, Beijing 102249, China)

  • Hongfei Lai

    (National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou 511458, China)

  • Ying Fu

    (National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China
    College of Geosciences, China University of Petroleum, Beijing 102249, China)

  • Zenggui Kuang

    (National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou 511458, China)

  • Yunxin Fang

    (National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou Marine Geological Survey, Ministry of Natural Resources, Guangzhou 511458, China)

Abstract

Large amounts of natural gas hydrates have been discovered in the Qiongdongnan Basin (QDNB), South China Sea. The chemical and stable carbon isotopic composition shows that the hydrate-bound gas was a mixture of thermogenic and microbial gases. It is estimated that microbial gas accounts for 40.96% to 60.58%, showing a trend of decrease with the increase in burial depth. A significant amount of gas hydrates is thought to be stored in the mass transport deposits (MTDs), exhibiting vertical superposition characteristics. The stable carbon isotopic values of methane (δ 13 C 1 ) in the MTD1, located near the seabed, are less than −55‰, while those of the methane below the bottom boundary of MTD3 are all higher than −55‰. The pure structure I (sI) and structure II (sII) gas hydrates were discovered at the depths of 8 mbsf and 145.65 mbsf, respectively, with mixed sI and sII gas hydrates occurring in the depth range 58–144 mbsf. In addition, a series of indigenous organic matters and allochthonous hydrocarbons were extracted from the hydrate-bearing sediments, which were characterized by the origin of immature terrigenous organic matter and low-moderate mature marine algal/bacterial materials, respectively. More allochthonous (migrated) hydrocarbons were also discovered in the sediments below the bottom boundary of MTD3. The gas hydrated is “wet gas” characterized by a low C 1 /(C 2 + C 3 ) ratio, from 2.55 to 43.33, which was mainly derived from a deeply buried source kitchen at a mature stage. There is change in the heterogeneity between the compositions of gas and biomarkers at the site GMGS5-W08 along the depth and there is generally a higher proportion of thermogenic hydrocarbons at the bottom boundary of each MTDs, which indicates a varying contribution of deeply buried thermogenic hydrocarbons. Our results indicate that the MTDs played a blocking role in regulating the vertical transportation of hydrate-related gases and affect the distribution of gas hydrate accumulation in the QDNB.

Suggested Citation

  • Huaxin Liu & Meijun Li & Hongfei Lai & Ying Fu & Zenggui Kuang & Yunxin Fang, 2024. "Controlling Factors of Vertical Geochemical Variations in Hydrate-Rich Sediments at the Site GMGS5-W08 in the Qiongdongnan Basin, Northern South China Sea," Energies, MDPI, vol. 17(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:412-:d:1319034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    2. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    3. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    4. Maria Filomena Loreto & Umberta Tinivella & Flavio Accaino & Michela Giustiniani, 2010. "Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis," Energies, MDPI, vol. 4(1), pages 1-18, December.
    5. Yang, Ming & Wang, Yuze & Wu, Hui & Zhang, Pengwei & Ju, Xin, 2024. "Thermo-hydro-chemical modeling and analysis of methane extraction from fractured gas hydrate-bearing sediments," Energy, Elsevier, vol. 292(C).
    6. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    7. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    8. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).
    9. Luís Bernardes & Júlio Carneiro & Pedro Madureira & Filipe Brandão & Cristina Roque, 2015. "Determination of Priority Study Areas for Coupling CO2 Storage and CH 4 Gas Hydrates Recovery in the Portuguese Offshore Area," Energies, MDPI, vol. 8(9), pages 1-17, September.
    10. You, Zeshao & Li, Yanghui & Yang, Meixiao & Wu, Peng & Liu, Tao & Li, Jiayu & Hu, Wenkang & Song, Yongchen, 2024. "Investigation of particle-scale mechanical behavior of hydrate-bearing sands using DEM: Focus on hydrate habits," Energy, Elsevier, vol. 289(C).
    11. Nicola Varini & Niall J. English & Christian R. Trott, 2012. "Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms," Energies, MDPI, vol. 5(9), pages 1-8, September.
    12. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    13. Lee, Joonseop & Lee, Dongyoung & Seo, Yongwon, 2021. "Experimental investigation of the exact role of large-molecule guest substances (LMGSs) in determining phase equilibria and structures of natural gas hydrates," Energy, Elsevier, vol. 215(PB).
    14. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    15. Zhong, Jin-Rong & Sun, Yi-Fei & Li, Wen-Zhi & Xie, Yan & Chen, Guang-Jin & Sun, Chang-Yu & Yang, Lan-Ying & Qin, Hui-Bo & Pang, Wei-Xin & Li, Qing-Ping, 2019. "Structural transition range of methane-ethane gas hydrates during decomposition below ice point," Applied Energy, Elsevier, vol. 250(C), pages 873-881.
    16. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    17. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Tang, Jiadi & Lei, Gang & Wu, Qi & Zhang, Ling & Ning, Fulong, 2024. "An improved analytical model of effective thermal conductivity for hydrate-bearing sediments during elastic-plastic deformation and local thermal stimulation," Energy, Elsevier, vol. 305(C).
    19. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    20. Yi Wang & Chun-Gang Xu & Xiao-Sen Li & Gang Li & Zhao-Yang Chen, 2013. "Similarity Analysis in Scaling a Gas Hydrates Reservoir," Energies, MDPI, vol. 6(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:412-:d:1319034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.