IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p323-d1315606.html
   My bibliography  Save this article

Deformation Analysis of Different Lithium Battery Designs Using the DIC Technique

Author

Listed:
  • Szabolcs Kocsis Szürke

    (Central Campus Győr, Széchenyi István University, H-9026 Győr, Hungary)

  • Mátyás Szabó

    (Central Campus Győr, Széchenyi István University, H-9026 Győr, Hungary)

  • Szabolcs Szalai

    (Central Campus Győr, Széchenyi István University, H-9026 Győr, Hungary)

  • Szabolcs Fischer

    (Central Campus Győr, Széchenyi István University, H-9026 Győr, Hungary)

Abstract

The growing number of electric vehicles and devices drives the demand for lithium-ion batteries. The purpose of the batteries used in electric vehicles and applications is primarily to preserve the cells and extend their lifetime, but they will wear out over time, even under ideal conditions. Most battery system failures are caused by a few cells, but the entire system may have to be scrapped in such cases. To address this issue, the goal is to create a concept that will extend the life of batteries while reducing the industrial and chemical waste generated by batteries. Secondary use can increase battery utilization and extend battery life. However, processing a large number of used battery cells at an industrial level is a significant challenge for both manufacturers and users. The different battery sizes and compositions used by various manufacturers of electric vehicles and electronic devices make it extremely difficult to solve the processing problem at the system level. The purpose of this study is to look into non-destructive battery diagnostic options. During the tests, the condition of the cells is assessed using a new diagnostic technique, 3D surface digitalization, and the fusion of electrical parameters. In the case of surface digitalization, the digital image correlation (DIC) technique was used to estimate the cell state. The tests were conducted on various cells with widely used geometries and encapsulations. These included a lithium polymer (soft casing), 18650 standard sizes (hard casing), and prismatic cells (semi-hard). The study also included testing each battery at various charge states during charging and discharging. The findings help to clarify the changes in battery cell geometry and their localization. The findings can be applied to cell diagnostic applications such as recycling, quality assurance, and vehicle diagnostics.

Suggested Citation

  • Szabolcs Kocsis Szürke & Mátyás Szabó & Szabolcs Szalai & Szabolcs Fischer, 2024. "Deformation Analysis of Different Lithium Battery Designs Using the DIC Technique," Energies, MDPI, vol. 17(2), pages 1-23, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:323-:d:1315606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arno Kwade & Wolfgang Haselrieder & Ruben Leithoff & Armin Modlinger & Franz Dietrich & Klaus Droeder, 2018. "Current status and challenges for automotive battery production technologies," Nature Energy, Nature, vol. 3(4), pages 290-300, April.
    2. Ziming Xu & Jun Xu & Zhechen Guo & Haitao Wang & Zheng Sun & Xuesong Mei, 2022. "Design and Optimization of a Novel Microchannel Battery Thermal Management System Based on Digital Twin," Energies, MDPI, vol. 15(4), pages 1-20, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Abdollahifar, M. & Molaiyan, P. & Lassi, U. & Wu, N.L. & Kwade, A., 2022. "Multifunctional behaviour of graphite in lithium–sulfur batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    5. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    6. Cotterman, Turner & Fuchs, Erica R.H. & Whitefoot, Kate S. & Combemale, Christophe, 2024. "The transition to electrified vehicles: Evaluating the labor demand of manufacturing conventional versus battery electric vehicle powertrains," Energy Policy, Elsevier, vol. 188(C).
    7. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    8. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    9. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Marius Chofor Asaba & Fabian Duffner & Florian Frieden & Jens Leker & Stephan von Delft, 2022. "Location choice for large‐scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1514-1527, August.
    11. Mozaffar Abdollahifar & Palanivel Molaiyan & Milena Perovic & Arno Kwade, 2022. "Insights into Enhancing Electrochemical Performance of Li-Ion Battery Anodes via Polymer Coating," Energies, MDPI, vol. 15(23), pages 1-28, November.
    12. Grabmann, Sophie & Bernauer, Christian & Wach, Lovis & Leeb, Matthias & Zaeh, Michael F., 2023. "A method for the reproducible and accurate determination of electrical resistances based on multi-layer joints in lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
    13. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    14. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    15. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    16. Jakob Veitl & Hans-Konrad Weber & Martin Frankenberger & Karl-Heinz Pettinger, 2022. "Modification of Battery Separators via Electrospinning to Enable Lamination in Cell Assembly," Energies, MDPI, vol. 15(22), pages 1-16, November.
    17. Zuo, Zhijian & Liu, Tian & Li, Weihong & Xiao, Hong & Lin, Taiping & Gong, Shuguang & Zhang, Jianping, 2023. "A study of particle flow in a ribbon reactor: Effect of ribbon configuration on mixing and heat transfer performance," Energy, Elsevier, vol. 284(C).
    18. Mona Faraji Niri & Koorosh Aslansefat & Sajedeh Haghi & Mojgan Hashemian & Rüdiger Daub & James Marco, 2023. "A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation," Energies, MDPI, vol. 16(17), pages 1-38, September.
    19. Simon Müller & Christina Sauter & Ramesh Shunmugasundaram & Nils Wenzler & Vincent Andrade & Francesco Carlo & Ender Konukoglu & Vanessa Wood, 2021. "Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:323-:d:1315606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.