IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009777.html
   My bibliography  Save this article

A method for the reproducible and accurate determination of electrical resistances based on multi-layer joints in lithium-ion batteries

Author

Listed:
  • Grabmann, Sophie
  • Bernauer, Christian
  • Wach, Lovis
  • Leeb, Matthias
  • Zaeh, Michael F.

Abstract

The transition from fossil fuels to renewable energy sources is significantly influenced by the development of energy storage systems such as batteries. One of the crucial steps in the production of lithium-ion batteries is the electrical connection of the individual electrodes by weld seams. Various joining processes, such as laser beam welding or ultrasonic metal welding, are used for this purpose. An important quality feature of the connections is a low electrical joint resistance, which is essential for reducing cell-internal energy losses and avoiding thermal inhomogeneities in the cells.

Suggested Citation

  • Grabmann, Sophie & Bernauer, Christian & Wach, Lovis & Leeb, Matthias & Zaeh, Michael F., 2023. "A method for the reproducible and accurate determination of electrical resistances based on multi-layer joints in lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009777
    DOI: 10.1016/j.apenergy.2023.121613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009777
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wassiliadis, Nikolaos & Ank, Manuel & Wildfeuer, Leo & Kick, Michael K. & Lienkamp, Markus, 2021. "Experimental investigation of the influence of electrical contact resistance on lithium-ion battery testing for fast-charge applications," Applied Energy, Elsevier, vol. 295(C).
    2. Arno Kwade & Wolfgang Haselrieder & Ruben Leithoff & Armin Modlinger & Franz Dietrich & Klaus Droeder, 2018. "Current status and challenges for automotive battery production technologies," Nature Energy, Nature, vol. 3(4), pages 290-300, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jianzhao & Zhang, Chaoyong & Giam, Amanda & Chia, Hou Yi & Cao, Huajun & Ge, Wenjun & Yan, Wentao, 2024. "Physics-assisted transfer learning metamodels to predict bead geometry and carbon emission in laser butt welding," Applied Energy, Elsevier, vol. 359(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Jiaqiang & Fan, Yuan & Pan, Tianhong & Zhang, Xu & Yin, Jianning & Zhang, Qingping, 2024. "A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Abdollahifar, M. & Molaiyan, P. & Lassi, U. & Wu, N.L. & Kwade, A., 2022. "Multifunctional behaviour of graphite in lithium–sulfur batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    4. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    5. Hou, Liubin & Dong, Ao & Ma, Ruifei & Lin, Hejie & Deng, Yelin, 2024. "The sensitive detection of the early-stage internal short circuit triggered by lithium plating through the simplified electrochemical model at various working conditions," Energy, Elsevier, vol. 304(C).
    6. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    7. Cotterman, Turner & Fuchs, Erica R.H. & Whitefoot, Kate S. & Combemale, Christophe, 2024. "The transition to electrified vehicles: Evaluating the labor demand of manufacturing conventional versus battery electric vehicle powertrains," Energy Policy, Elsevier, vol. 188(C).
    8. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    9. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    10. Marius Chofor Asaba & Fabian Duffner & Florian Frieden & Jens Leker & Stephan von Delft, 2022. "Location choice for large‐scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1514-1527, August.
    11. Mozaffar Abdollahifar & Palanivel Molaiyan & Milena Perovic & Arno Kwade, 2022. "Insights into Enhancing Electrochemical Performance of Li-Ion Battery Anodes via Polymer Coating," Energies, MDPI, vol. 15(23), pages 1-28, November.
    12. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    13. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    14. Tang, Chen & Sprecher, Benjamin & Tukker, Arnold & Mogollón, José M., 2021. "The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040," Resources Policy, Elsevier, vol. 74(C).
    15. Jakob Veitl & Hans-Konrad Weber & Martin Frankenberger & Karl-Heinz Pettinger, 2022. "Modification of Battery Separators via Electrospinning to Enable Lamination in Cell Assembly," Energies, MDPI, vol. 15(22), pages 1-16, November.
    16. Zuo, Zhijian & Liu, Tian & Li, Weihong & Xiao, Hong & Lin, Taiping & Gong, Shuguang & Zhang, Jianping, 2023. "A study of particle flow in a ribbon reactor: Effect of ribbon configuration on mixing and heat transfer performance," Energy, Elsevier, vol. 284(C).
    17. Mona Faraji Niri & Koorosh Aslansefat & Sajedeh Haghi & Mojgan Hashemian & Rüdiger Daub & James Marco, 2023. "A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation," Energies, MDPI, vol. 16(17), pages 1-38, September.
    18. Kim, Hong-Keun & Lee, Kyu-Jin, 2023. "Use of a multiphysics model to investigate the performance and degradation of lithium-ion battery packs with different electrical configurations," Energy, Elsevier, vol. 262(PB).
    19. Simon Müller & Christina Sauter & Ramesh Shunmugasundaram & Nils Wenzler & Vincent Andrade & Francesco Carlo & Ender Konukoglu & Vanessa Wood, 2021. "Deep learning-based segmentation of lithium-ion battery microstructures enhanced by artificially generated electrodes," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.