IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p295-d1314548.html
   My bibliography  Save this article

Steady- and Transient-State CFD Simulations of a Modified Barra–Costantini Solar System in Comparison with a Traditional Trombe–Michel Wall

Author

Listed:
  • Sandra Corasaniti

    (Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico n.1, 00133 Rome, Italy)

  • Luca Manni

    (Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico n.1, 00133 Rome, Italy)

  • Ivano Petracci

    (Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico n.1, 00133 Rome, Italy)

  • Michele Potenza

    (Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico n.1, 00133 Rome, Italy)

Abstract

Passive solar systems are one of most important strategies to reduce the heating loads of buildings. The Trombe–Michel (TM) wall and its variants are some of the better-known structures in the field of solar systems. An alternative to the TM wall is the Barra–Costantini (BC) system. In the present paper, CFD numerical simulations, both in steady and transient states, of modified BC and TM walls were carried out in the winter season. Different interspace thicknesses were simulated in order to evaluate their effects on the temperature field and air velocity, and the numerical results were compared among them. It was found that the BC system offers greater hot air flow compared with the TM wall; the mass flow rate increased up to 43% in the BC system and up 28% in the TM system when the interlayer thickness was increased by 500%. The transient simulations (100 h simulated) demonstrated that the dynamic response of the BC wall was shorter than that of the TM wall, even when the TM wall was simulated with initial thermal conditions that were more advantageous than those for the BC wall. The BC system reached a periodic stabilized regime within 24 h, whereas the TM system failed to stabilize in 100 h. The results show that for both TM and BC structures, the interlayer thickness scarcely influenced the temperature of the environment reached (the temperature peak increased up to 3–4% as the interlayer thickness was increased by 500%), while larger air speed changes were observed in the BC system in the transient state compared with the TM system. Thus, in the TM system, the outlet air velocity was practically constant as the interlayer thickness was increased; in contrast, the outlet velocity peak increased up to 50% in the BC system. Moreover, the BC wall presented a quicker response to satisfy the ambient thermal loads.

Suggested Citation

  • Sandra Corasaniti & Luca Manni & Ivano Petracci & Michele Potenza, 2024. "Steady- and Transient-State CFD Simulations of a Modified Barra–Costantini Solar System in Comparison with a Traditional Trombe–Michel Wall," Energies, MDPI, vol. 17(2), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:295-:d:1314548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Xiaoqiang & Leung, Michael K.H. & He, Wei, 2019. "Effective use of venetian blind in Trombe wall for solar space conditioning control," Applied Energy, Elsevier, vol. 250(C), pages 452-460.
    2. Kundakci Koyunbaba, Basak & Yilmaz, Zerrin, 2012. "The comparison of Trombe wall systems with single glass, double glass and PV panels," Renewable Energy, Elsevier, vol. 45(C), pages 111-118.
    3. Hu, Zhongting & He, Wei & Hu, Dengyun & Lv, Song & Wang, Liping & Ji, Jie & Chen, Hongbing & Ma, Jinwei, 2017. "Design, construction and performance testing of a PV blind-integrated Trombe wall module," Applied Energy, Elsevier, vol. 203(C), pages 643-656.
    4. Yuewei Zhu & Tao Zhang & Qingsong Ma & Hiroatsu Fukuda, 2022. "Thermal Performance and Optimizing of Composite Trombe Wall with Temperature-Controlled DC Fan in Winter," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    2. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    3. Lin, Yuan & Ji, Jie & Lu, Xiangyou & Luo, Kun & Zhou, Fan & Ma, Yang, 2019. "Thermal and electrical behavior of built-middle photovoltaic integrated Trombe wall: Experimental and numerical study," Energy, Elsevier, vol. 189(C).
    4. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    6. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    7. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    8. Jerzy Szyszka & Piero Bevilacqua & Roberto Bruno, 2020. "An Innovative Trombe Wall for Winter Use: The Thermo-Diode Trombe Wall," Energies, MDPI, vol. 13(9), pages 1-15, May.
    9. Xu, Bin & Gan, Wen-tao & Wang, Yang-liang & Chen, Xing-ni & Fei, Yue & Pei, Gang, 2023. "Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter," Renewable Energy, Elsevier, vol. 213(C), pages 246-258.
    10. Dimitrios Fidaros & Catherine Baxevanou & Michalina Markousi & Aris Tsangrassoulis, 2022. "Assessment of Various Trombe Wall Geometries with CFD Study," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    11. Yu, Bendong & Hou, Jingxin & He, Wei & Liu, Shanshan & Hu, Zhongting & Ji, Jie & Chen, Hongbing & Xu, Gang, 2018. "Study on a high-performance photocatalytic-Trombe wall system for space heating and air purification," Applied Energy, Elsevier, vol. 226(C), pages 365-380.
    12. Xiao, Yuling & Yang, Qianli & Fei, Fan & Li, Kai & Jiang, Yijun & Zhang, Yuanwen & Fukuda, Hiroatsu & Ma, Qingsong, 2024. "Review of Trombe wall technology: Trends in optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    13. Ahmed, Omer K. & Hamada, Khalaf I. & Salih, Abdulrazzaq M., 2019. "Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: Experimental and theoretical study," Energy, Elsevier, vol. 171(C), pages 14-26.
    14. Yu, Bendong & Yang, Jichun & He, Wei & Qin, Minghui & Zhao, Xudong & Chen, Hongbing, 2019. "The performance analysis of a novel hybrid solar gradient utilization photocatalytic-thermal-catalytic-Trombe wall system," Energy, Elsevier, vol. 174(C), pages 420-435.
    15. Qing Yin & Hengyu Liu & Tianfu Zhou, 2023. "CiteSpace-Based Visualization Analysis on the Trombe Wall in Solar Buildings," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
    16. Duan, Xiaojian & Shen, Chao & Liu, Dingming & Wu, Yupeng, 2023. "The performance analysis of a photo/thermal catalytic Trombe wall with energy generation," Renewable Energy, Elsevier, vol. 218(C).
    17. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    18. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    19. Ceylin Şirin & Azim Doğuş Tuncer & Ataollah Khanlari, 2023. "Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    20. Abed, Azhar Ahmed & Ahmed, Omer Khalil & Weis, Musa Mustafa & Hamada, Khalaf Ibrahim, 2020. "Performance augmentation of a PV/Trombe wall using Al2O3/Water nano-fluid: An experimental investigation," Renewable Energy, Elsevier, vol. 157(C), pages 515-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:295-:d:1314548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.