IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p293-d1314409.html
   My bibliography  Save this article

Enhanced Coordination in the PV–HESS Microgrids Cluster: Introducing a New Distributed Event Consensus Algorithm

Author

Listed:
  • Zaid Hamid Abdulabbas Al-Tameemi

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

  • Tek Tjing Lie

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

  • Ramon Zamora

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

To ensure reliable power delivery to customers under potential disturbances, the coordination of a microgrid cluster (MGC) is essential. Various control strategies—centralized, decentralized, distributed, and hierarchical—have been explored in the literature to achieve this goal. The hierarchical control method, with three distinct levels, has proven effective in fostering coordination among microgrids (MGs) within the cluster. The third control level, utilizing a time-triggering consensus protocol, relies on a continuous and reliable communication network for data exchange among MGs, leading to resource-intensive operations and potential data congestion. Moreover, uncertainties introduced by renewable energy sources (RESs) can adversely impact cluster performance. In response to these challenges, this paper introduces a new distributed event-triggered consensus algorithm (DETC) to enhance the efficiency in handling the aforementioned issues. The proposed algorithm significantly reduces communication burdens, addressing resource usage concerns. The performance of this approach is evaluated through simulations of a cluster comprising four DC MGs, in each of which were PV and a hybrid Battery-Super capacitor in the MATLAB environment. The key findings indicate that the proposed DETC algorithm achieves commendable results in terms of voltage regulation, precise power sharing among sources, and a reduction in triggering instants. Based on these results, this method can be deemed as a good development in MGC management, providing a more efficient and reliable means of coordination, particularly in scenarios with dynamic loads and renewable energy integration. It is also a viable option for current microgrid systems, due to its ability to decrease communication loads while retaining excellent performance.

Suggested Citation

  • Zaid Hamid Abdulabbas Al-Tameemi & Tek Tjing Lie & Ramon Zamora & Frede Blaabjerg, 2024. "Enhanced Coordination in the PV–HESS Microgrids Cluster: Introducing a New Distributed Event Consensus Algorithm," Energies, MDPI, vol. 17(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:293-:d:1314409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar Makram Kamel & Ahmed A. Zaki Diab & Mohamed Metwally Mahmoud & Ameena Saad Al-Sumaiti & Hamdy M. Sultan, 2023. "Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems," Energies, MDPI, vol. 16(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasha Kassem & Mohamed Metwally Mahmoud & Nagwa F. Ibrahim & Abdulaziz Alkuhayli & Usama Khaled & Abderrahmane Beroual & Hedra Saleeb, 2024. "A Techno-Economic-Environmental Feasibility Study of Residential Solar Photovoltaic/Biomass Power Generation for Rural Electrification: A Real Case Study," Sustainability, MDPI, vol. 16(5), pages 1-24, February.
    2. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.
    3. Angelos Patsidis & Adam Dyśko & Campbell Booth & Anastasios Oulis Rousis & Polyxeni Kalliga & Dimitrios Tzelepis, 2023. "Digital Architecture for Monitoring and Operational Analytics of Multi-Vector Microgrids Utilizing Cloud Computing, Advanced Virtualization Techniques, and Data Analytics Methods," Energies, MDPI, vol. 16(16), pages 1-19, August.
    4. Awadh Ba Wazir & Ahmed Althobiti & Abdullah A. Alhussainy & Sultan Alghamdi & Mahendiran Vellingiri & Thangam Palaniswamy & Muhyaddin Rawa, 2024. "A Comparative Study of Load Frequency Regulation for Multi-Area Interconnected Grids Using Integral Controller," Sustainability, MDPI, vol. 16(9), pages 1-50, May.
    5. Shruti Singh & David Wenzhong Gao, 2023. "Comparison amongst Lagrange, Firefly, and ABC Algorithms for Low-Noise Economic Dispatch and Reactive Power Compensation in Islanded Microgrids," Energies, MDPI, vol. 16(13), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:293-:d:1314409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.