IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6454-d1549482.html
   My bibliography  Save this article

Reactive Power Optimization Method of Power Network Based on Deep Reinforcement Learning Considering Topology Characteristics

Author

Listed:
  • Tianhua Chen

    (State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks, Nanjing 211106, China
    Nari Technology Co., Ltd., Nanjing 211106, China)

  • Zemei Dai

    (State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks, Nanjing 211106, China
    Nari Technology Co., Ltd., Nanjing 211106, China)

  • Xin Shan

    (State Key Laboratory of Technology and Equipment for Defense against Power System Operational Risks, Nanjing 211106, China
    Nari Technology Co., Ltd., Nanjing 211106, China)

  • Zhenghong Li

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Chengming Hu

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Yang Xue

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Ke Xu

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

Abstract

Aiming at the load fluctuation problem caused by a high proportion of new energy grid connections, a reactive power optimization method based on deep reinforcement learning (DRL) considering topological characteristics is proposed. The proposed method transforms the reactive power optimization problem into a Markov decision process and models and solves it through the deep reinforcement learning framework. The Dueling Double Deep Q-Network (D3QN) algorithm is adopted to improve the accuracy and efficiency of calculation. Aiming at the problem that deep reinforcement learning algorithms are difficult to simulate the topological characteristics of power flow, the Graph Convolutional Dueling Double Deep Q-Network (GCD3QN) algorithm is proposed. The graph convolutional neural network (GCN) is integrated into the D3QN model, and the information aggregation of topological nodes is realized through the graph convolution operator, which solves the calculation problem of deep learning algorithms in non-European space and improves the accuracy of reactive power optimization. The IEEE standard node system is used for simulation analysis, and the effectiveness of the proposed method is verified.

Suggested Citation

  • Tianhua Chen & Zemei Dai & Xin Shan & Zhenghong Li & Chengming Hu & Yang Xue & Ke Xu, 2024. "Reactive Power Optimization Method of Power Network Based on Deep Reinforcement Learning Considering Topology Characteristics," Energies, MDPI, vol. 17(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6454-:d:1549482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    2. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    3. Osorio, J.D. & Rivera-Alvarez, A. & Swain, M. & Ordonez, J.C., 2015. "Exergy analysis of discharging multi-tank thermal energy storage systems with constant heat extraction," Applied Energy, Elsevier, vol. 154(C), pages 333-343.
    4. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    5. Abada, I. & Ehrenmann, A. & Lambin, X., 2017. "On the viability of energy communities," Cambridge Working Papers in Economics 1740, Faculty of Economics, University of Cambridge.
    6. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    7. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    8. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    9. Zhu, Kai & Li, Xueqiang & Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2018. "Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses," Applied Energy, Elsevier, vol. 216(C), pages 348-357.
    10. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    11. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    12. Ibrahim Abada & Andreas Ehrenmann & Xavier Lambin, 2020. "On the Viability of Energy Communities," The Energy Journal, , vol. 41(1), pages 113-150, January.
    13. McKenna, Russell & Merkel, Erik & Fichtner, Wolf, 2017. "Energy autonomy in residential buildings: A techno-economic model-based analysis of the scale effects," Applied Energy, Elsevier, vol. 189(C), pages 800-815.
    14. Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
    15. Correa-Florez, Carlos Adrian & Gerossier, Alexis & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Stochastic operation of home energy management systems including battery cycling," Applied Energy, Elsevier, vol. 225(C), pages 1205-1218.
    16. Chen, Weidong & Wei, Pengbang, 2018. "Socially optimal deployment strategy and incentive policy for solar photovoltaic community microgrid: A case of China," Energy Policy, Elsevier, vol. 116(C), pages 86-94.
    17. Ibrahim Abada, Andreas Ehrenmann, and Xavier Lambin, 2020. "On the Viability of Energy Communities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Setlhaolo, Ditiro & Sichilalu, Sam & Zhang, Jiangfeng, 2017. "Residential load management in an energy hub with heat pump water heater," Applied Energy, Elsevier, vol. 208(C), pages 551-560.
    19. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    20. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6454-:d:1549482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.