Modern SCADA for CSP Systems Based on OPC UA, Wi-Fi Mesh Networks, and Open-Source Software
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Guang Wang & Jiale Xie & Shunli Wang, 2023. "Application of Artificial Intelligence in Power System Monitoring and Fault Diagnosis," Energies, MDPI, vol. 16(14), pages 1-3, July.
- Mahmoud Kiasari & Mahdi Ghaffari & Hamed H. Aly, 2024. "A Comprehensive Review of the Current Status of Smart Grid Technologies for Renewable Energies Integration and Future Trends: The Role of Machine Learning and Energy Storage Systems," Energies, MDPI, vol. 17(16), pages 1-38, August.
- Carballo, Jose A. & Bonilla, Javier & Berenguel, Manuel & Fernández-Reche, Jesús & García, Ginés, 2019. "New approach for solar tracking systems based on computer vision, low cost hardware and deep learning," Renewable Energy, Elsevier, vol. 133(C), pages 1158-1166.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Leihou & Bai, Jianbo & Pachauri, Rupendra Kumar & Wang, Shitao, 2024. "A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules," Renewable Energy, Elsevier, vol. 221(C).
- Max Pargmann & Jan Ebert & Markus Götz & Daniel Maldonado Quinto & Robert Pitz-Paal & Stefan Kesselheim, 2024. "Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Sridharan Naveen Venkatesh & Vaithiyanathan Sugumaran, 2022. "A combined approach of convolutional neural networks and machine learning for visual fault classification in photovoltaic modules," Journal of Risk and Reliability, , vol. 236(1), pages 148-159, February.
- Satué, Manuel G. & Castaño, Fernando & Ortega, Manuel G. & Rubio, Francisco R., 2020. "Power feedback strategy based on efficiency trajectory analysis for HCPV sun tracking," Renewable Energy, Elsevier, vol. 161(C), pages 65-76.
- Li, Guannan & Chen, Liang & Liu, Jiangyan & Fang, Xi, 2023. "Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis," Energy, Elsevier, vol. 263(PD).
More about this item
Keywords
SCADA; heliostat; OPC UA; Wi-Fi mesh network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6284-:d:1542786. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.