IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6214-d1540200.html
   My bibliography  Save this article

An Online Estimation Method for the Equivalent Inertia Time Constant of Power Equipment Based on Node Power Flow Equations

Author

Listed:
  • Zhenghui Zhao

    (School of Electrical Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Xianan Wang

    (School of Electrical Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Jinhui Sun

    (School of Electrical Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yubo Sun

    (Department of Electrical Engineering, Tsinghua University, Beijing 100190, China)

  • Qian Zhang

    (School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yang Wang

    (School of Electrical Information Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

As renewable energy integration scales up, power systems increasingly depend on sources interfaced through power electronic converters, which lack rotating mass and substantially diminish system inertia. This reduction in inertia, coupled with the complex and diverse control strategies governing power electronics, presents significant challenges in accurately assessing the equivalent inertia levels within modern power systems. This paper introduces an online method for estimating the inertia time constant of power nodes, grounded in the node power flow equation, to address these challenges. The approach begins by deriving the rotor motion equation for synchronous generators and defining the inertia time constant of power nodes through an analysis of the power flow equations. Real-time frequency and voltage phasor data are collected from system nodes using phasor measurement units. The frequency state of the power equipment is then characterized using a divider formula, and the equivalent reactance between the power equipment and the node is further derived through the node power flow equation. This enables the real-time estimation of the equivalent inertia time constant for power nodes within the system. The effectiveness of the proposed method is demonstrated through simulations on the WSCC9 system, confirming its applicability for real-time system analysis.

Suggested Citation

  • Zhenghui Zhao & Xianan Wang & Jinhui Sun & Yubo Sun & Qian Zhang & Yang Wang, 2024. "An Online Estimation Method for the Equivalent Inertia Time Constant of Power Equipment Based on Node Power Flow Equations," Energies, MDPI, vol. 17(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6214-:d:1540200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    2. Helistö, Niina & Kiviluoma, Juha & Morales-España, Germán & O’Dwyer, Ciara, 2021. "Impact of operational details and temporal representations on investment planning in energy systems dominated by wind and solar," Applied Energy, Elsevier, vol. 290(C).
    3. Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).
    4. Joo, Seongpil & Choi, Jongwun & Lee, Min Chul & Kim, Namkeun, 2021. "Prognosis of combustion instability in a gas turbine combustor using spectral centroid & spread," Energy, Elsevier, vol. 224(C).
    5. Mays, Jacob, 2021. "Missing incentives for flexibility in wholesale electricity markets," Energy Policy, Elsevier, vol. 149(C).
    6. Christos Agathokleous & Jimmy Ehnberg, 2020. "A Quantitative Study on the Requirement for Additional Inertia in the European Power System until 2050 and the Potential Role of Wind Power," Energies, MDPI, vol. 13(9), pages 1-14, May.
    7. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    8. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).
    9. Clift, Dean Holland & Stanley, Cameron & Hasan, Kazi N. & Rosengarten, Gary, 2023. "Assessment of advanced demand response value streams for water heaters in renewable-rich electricity markets," Energy, Elsevier, vol. 267(C).
    10. Ahmed, Faraedoon & Al Kez, Dlzar & McLoone, Seán & Best, Robert James & Cameron, Ché & Foley, Aoife, 2023. "Dynamic grid stability in low carbon power systems with minimum inertia," Renewable Energy, Elsevier, vol. 210(C), pages 486-506.
    11. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    12. Guerra, K. & Welfle, A. & Gutiérrez-Alvarez, R. & Freer, M. & Ma, L. & Haro, P., 2024. "The role of energy storage in Great Britain's future power system: focus on hydrogen and biomass," Applied Energy, Elsevier, vol. 357(C).
    13. Henning Thiesen & Clemens Jauch, 2021. "Application of a New Dispatch Methodology to Identify the Influence of Inertia Supplying Wind Turbines on Day-Ahead Market Sales Volumes," Energies, MDPI, vol. 14(5), pages 1-19, February.
    14. Masood, Nahid-Al- & Mahmud, Sajjad Uddin & Ansary, Md Nazmuddoha & Deeba, Shohana Rahman, 2022. "Improvement of system strength under high wind penetration: A techno-economic assessment using synchronous condenser and SVC," Energy, Elsevier, vol. 246(C).
    15. Xing, Wei & Wang, Hewu & Lu, Languang & Han, Xuebing & Sun, Kai & Ouyang, Minggao, 2021. "An adaptive virtual inertia control strategy for distributed battery energy storage system in microgrids," Energy, Elsevier, vol. 233(C).
    16. Glismann, Samuel, 2021. "Ancillary Services Acquisition Model: Considering market interactions in policy design," Applied Energy, Elsevier, vol. 304(C).
    17. Young-Kwang Park & Seong-Won Moon & Tong-Seop Kim, 2021. "Advanced Control to Improve the Ramp-Rate of a Gas Turbine: Optimization of Control Schedule," Energies, MDPI, vol. 14(23), pages 1-23, December.
    18. Rezk, Hegazy & Aly, Mokhtar & Fathy, Ahmed, 2021. "A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT," Energy, Elsevier, vol. 234(C).
    19. R. Patrick Bixler & Katherine Lieberknecht & Fernanda Leite & Juliana Felkner & Michael Oden & Steven M. Richter & Samer Atshan & Alvaro Zilveti & Rachel Thomas, 2019. "An Observatory Framework for Metropolitan Change: Understanding Urban Social–Ecological–Technical Systems in Texas and Beyond," Sustainability, MDPI, vol. 11(13), pages 1-17, July.
    20. Ullmark, Jonathan & Göransson, Lisa & Chen, Peiyuan & Bongiorno, Massimo & Johnsson, Filip, 2021. "Inclusion of frequency control constraints in energy system investment modeling," Renewable Energy, Elsevier, vol. 173(C), pages 249-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6214-:d:1540200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.