IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6117-d1536936.html
   My bibliography  Save this article

Analysis of Grid-Scale Photovoltaic Plants Incorporating Battery Storage with Daily Constant Setpoints

Author

Listed:
  • Juan A. Tejero-Gómez

    (Department of Electrical Engineering, University of Zaragoza, 50018 Zaragoza, Spain)

  • Ángel A. Bayod-Rújula

    (Department of Electrical Engineering, University of Zaragoza, 50018 Zaragoza, Spain)

Abstract

A global energy transition is crucial to combat climate change, involving a shift from fossil fuels to renewable sources and low-emission technologies. Solar photovoltaic technology has grown exponentially in the last decade, establishing itself as a cost-effective and sustainable option for electricity generation. However, its large-scale integration faces challenges due to its intermittency and lack of dispatchability. This study evaluates, from an energy perspective, the case of hybrid photovoltaic (PV) plants with battery storage systems. It addresses an aspect little explored in the literature: the sizing of battery storage to maintain a steady and constant 24 h power supply, which is usually avoided due to its high cost. Although the current economic feasibility is limited, the rapidly falling price of lithium batteries suggests that this solution could be viable in the near future. Using Matlab simulations, the system’s ability to deliver a constant energy production of electricity is assessed. Energy indicators are used to identify the optimal system size under different scenarios and power setpoints. The results determine the optimal storage size to supply a constant power that covers all or a large part of the daily PV generation, achieving steady and reliable electricity production. In addition, the impact of using setpoints at different time horizons is assessed. This approach has the potential to redefine the perception of solar PV, making it a dispatchable energy source, improving its integration into the electricity grid, and supporting the transition to more sustainable and resilient energy systems.

Suggested Citation

  • Juan A. Tejero-Gómez & Ángel A. Bayod-Rújula, 2024. "Analysis of Grid-Scale Photovoltaic Plants Incorporating Battery Storage with Daily Constant Setpoints," Energies, MDPI, vol. 17(23), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6117-:d:1536936
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6117/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar Alrumayh & Khairy Sayed & Abdulaziz Almutairi, 2023. "LVRT and Reactive Power/Voltage Support of Utility-Scale PV Power Plants during Disturbance Conditions," Energies, MDPI, vol. 16(7), pages 1-20, April.
    2. Li, You & Zhou, Weisheng & Wang, Yafei & Miao, Sheng & Yao, Wanxiang & Gao, Weijun, 2025. "Interpretable deep learning framework for hourly solar radiation forecasting based on decomposing multi-scale variations," Applied Energy, Elsevier, vol. 377(PA).
    3. Fattori, Fabrizio & Anglani, Norma & Staffell, Iain & Pfenninger, Stefan, 2017. "High solar photovoltaic penetration in the absence of substantial wind capacity: Storage requirements and effects on capacity adequacy," Energy, Elsevier, vol. 137(C), pages 193-208.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michas, Serafeim & Flamos, Alexandros, 2023. "Are there preferable capacity combinations of renewables and storage? Exploratory quantifications along various technology deployment pathways," Energy Policy, Elsevier, vol. 174(C).
    2. Wen, Lei & Song, Qianqian, 2023. "ELCC-based capacity value estimation of combined wind - storage system using IPSO algorithm," Energy, Elsevier, vol. 263(PB).
    3. Cole, Wesley & Frew, Bethany & Gagnon, Pieter & Reimers, Andrew & Zuboy, Jarett & Margolis, Robert, 2018. "Envisioning a low-cost solar future: Exploring the potential impact of Achieving the SunShot 2030 targets for photovoltaics," Energy, Elsevier, vol. 155(C), pages 690-704.
    4. Bromley-Dulfano, Isaac & Florez, Julian & Craig, Michael T., 2021. "Reliability benefits of wide-area renewable energy planning across the Western United States," Renewable Energy, Elsevier, vol. 179(C), pages 1487-1499.
    5. Amer S. Alsalman & Talal Alharbi & Ahmed A. Mahfouz, 2023. "Enhancing the Stability of an Isolated Electric Grid by the Utilization of Energy Storage Systems: A Case Study on the Rafha Grid," Sustainability, MDPI, vol. 15(17), pages 1-24, September.
    6. Mills, Andrew D. & Rodriguez, Pía, 2020. "A simple and fast algorithm for estimating the capacity credit of solar and storage," Energy, Elsevier, vol. 210(C).
    7. Huo, Yujia & Gruosso, Giambattista, 2020. "A novel ramp-rate control of grid-tied PV-Battery systems to reduce required battery capacity," Energy, Elsevier, vol. 210(C).
    8. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    9. Xu, Tingting & Gao, Weijun & Qian, Fanyue & Li, Yanxue, 2022. "The implementation limitation of variable renewable energies and its impacts on the public power grid," Energy, Elsevier, vol. 239(PA).
    10. Seyedmohammad Hasheminasab & Mohamad Alzayed & Hicham Chaoui, 2024. "A Review of Control Techniques for Inverter-Based Distributed Energy Resources Applications," Energies, MDPI, vol. 17(12), pages 1-39, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6117-:d:1536936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.