IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p6071-d1535218.html
   My bibliography  Save this article

An Early Micro Internal Short Circuit Fault Diagnosis Method Based on Accumulated Correlation Coefficient for Lithium-Ion Battery Pack

Author

Listed:
  • Juntao Wang

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Zhengye Yang

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Shihao Wang

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Hui Yang

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Mingzhe Du

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Jifeng Song

    (Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China)

Abstract

Early micro internal short circuit (ISC) fault diagnosis is crucial for the safe and reliable operation of lithium-ion batteries. In order to solve the problem that the early micro ISC fault is difficult to identify due to its weak fault characteristics, this paper proposes a fault diagnosis method based on the accumulated correlation coefficient. Specifically, the method uses the accumulated voltage value within the time window as the input feature, constructs an adjustment factor based on the distance difference of the accumulated voltage value to amplify the difference between the fault voltage correlation coefficient and the normal voltage correlation coefficient, and finally achieves the purpose of highlighting the faulty cell. The effectiveness and diagnostic capability of the proposed method are verified in experiments of short circuit faults of different severity. The results show that the proposed method can effectively identify and locate early micro ISC faults within 200 s, and improve the diagnostic capability up to 0.02 C short-circuit severity. In addition, a multi-level diagnostic warning mechanism can be established according to the decrease of the fault voltage correlation coefficient, so as to measure the severity of the fault and track the fault evolution process.

Suggested Citation

  • Juntao Wang & Zhengye Yang & Shihao Wang & Hui Yang & Mingzhe Du & Jifeng Song, 2024. "An Early Micro Internal Short Circuit Fault Diagnosis Method Based on Accumulated Correlation Coefficient for Lithium-Ion Battery Pack," Energies, MDPI, vol. 17(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6071-:d:1535218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/6071/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/6071/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minhwan Seo & Taedong Goh & Minjun Park & Sang Woo Kim, 2018. "Detection Method for Soft Internal Short Circuit in Lithium-Ion Battery Pack by Extracting Open Circuit Voltage of Faulted Cell," Energies, MDPI, vol. 11(7), pages 1-18, June.
    2. Zhao, Yang & Liu, Peng & Wang, Zhenpo & Zhang, Lei & Hong, Jichao, 2017. "Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods," Applied Energy, Elsevier, vol. 207(C), pages 354-362.
    3. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    4. Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).
    5. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    2. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    3. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean, 2023. "Online diagnosis and prediction of power battery voltage comprehensive faults for electric vehicles based on multi-parameter characterization and improved K-means method," Energy, Elsevier, vol. 283(C).
    4. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    5. Chang, Chun & Wang, Qiyue & Jiang, Jiuchun & Jiang, Yan & Wu, Tiezhou, 2023. "Voltage fault diagnosis of a power battery based on wavelet time-frequency diagram," Energy, Elsevier, vol. 278(PB).
    6. Fan Zhang & Xiao Zheng & Zixuan Xing & Minghu Wu, 2024. "Fault Diagnosis Method for Lithium-Ion Power Battery Incorporating Multidimensional Fault Features," Energies, MDPI, vol. 17(7), pages 1-21, March.
    7. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Ma, Kai & Xu, Shaochun & Bai, Miao, 2024. "Concurrent multi-fault diagnosis of lithium-ion battery packs using random convolution kernel transformation and Gaussian process classifier," Energy, Elsevier, vol. 306(C).
    8. Li, Da & Zhang, Lei & Zhang, Zhaosheng & Liu, Peng & Deng, Junjun & Wang, Qiushi & Wang, Zhenpo, 2023. "Battery safety issue detection in real-world electric vehicles by integrated modeling and voltage abnormality," Energy, Elsevier, vol. 284(C).
    9. Xu, Yiming & Ge, Xiaohua & Shen, Weixiang, 2024. "Multi-objective nonlinear observer design for multi-fault detection of lithium-ion battery in electric vehicles," Applied Energy, Elsevier, vol. 362(C).
    10. Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
    11. Jiong Yang & Fanyong Cheng & Maxwell Duodu & Miao Li & Chao Han, 2022. "High-Precision Fault Detection for Electric Vehicle Battery System Based on Bayesian Optimization SVDD," Energies, MDPI, vol. 15(22), pages 1-20, November.
    12. Yang, Qifan & Sun, Jinlei & Kang, Yongzhe & Ma, Hongzhong & Duan, Dawei, 2023. "Internal short circuit detection and evaluation in battery packs based on transformation matrix and an improved state-space model," Energy, Elsevier, vol. 276(C).
    13. Yao, Lei & Dai, Huilin & Xiao, Yanqiu & Zhao, Changsheng & Fei, Zhigen & Cui, Guangzhen & Zhang, Longhai, 2024. "An intelligent diagnosis method for battery pack connection faults based on multiple correlation analysis and adaptive fusion decision-making," Energy, Elsevier, vol. 306(C).
    14. Neha Bhushan & Saad Mekhilef & Kok Soon Tey & Mohamed Shaaban & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "Overview of Model- and Non-Model-Based Online Battery Management Systems for Electric Vehicle Applications: A Comprehensive Review of Experimental and Simulation Studies," Sustainability, MDPI, vol. 14(23), pages 1-31, November.
    15. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    16. Yang, Jiong & Cheng, Fanyong & Liu, Zhi & Duodu, Maxwell Mensah & Zhang, Mingyan, 2023. "A novel semi-supervised fault detection and isolation method for battery system of electric vehicles," Applied Energy, Elsevier, vol. 349(C).
    17. Daniels, Rojo Kurian & Langeh, Harsh & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Faulty cell prediction accuracy comparison of machine learning algorithms using temperature sensor placement optimization approach in immersion cooled Li-ion battery modules," Applied Energy, Elsevier, vol. 367(C).
    18. Xie, Jiale & Xu, Jingfan & Wei, Zhongbao & Li, Xiaoyu, 2023. "Fault isolating and grading for li-ion battery packs based on pseudo images and convolutional neural network," Energy, Elsevier, vol. 263(PD).
    19. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    20. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Xiangli, Kang & Meng, Dean, 2024. "A novel method for fault diagnosis and type identification of cell voltage inconsistency in electric vehicles using weighted Euclidean distance evaluation and statistical analysis," Energy, Elsevier, vol. 293(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:6071-:d:1535218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.