IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5998-d1532017.html
   My bibliography  Save this article

Machine Learning-Assisted Prediction of Ambient-Processed Perovskite Solar Cells’ Performances

Author

Listed:
  • Dowon Pyun

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
    These authors contributed equally to this work.)

  • Seungtae Lee

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
    These authors contributed equally to this work.)

  • Solhee Lee

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
    These authors contributed equally to this work.)

  • Seok-Hyun Jeong

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Jae-Keun Hwang

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Kyunghwan Kim

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Youngmin Kim

    (Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea)

  • Jiyeon Nam

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Sujin Cho

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Ji-Seong Hwang

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Wonkyu Lee

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Sangwon Lee

    (Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea)

  • Hae-Seok Lee

    (Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea)

  • Donghwan Kim

    (Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea)

  • Yoonmook Kang

    (Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea)

Abstract

As we move towards the commercialization and upscaling of perovskite solar cells, it is essential to fabricate them in ambient environment rather than in the conventional glove box environment. The efficiency of ambient-processed perovskite solar cells lags behind those fabricated in controlled environments, primarily owing to external environmental factors such as humidity and temperature. In the case of device fabrication in ambient environments, relying solely on a single parameter, such as temperature or humidity, is insufficient for accurately characterizing environmental conditions. Therefore, the dew point is introduced as a parameter which accounts for both temperature and humidity. In this study, a machine learning model was developed to predict the efficiency of ambient-processed perovskite solar cells based on meteorological data, particularly the dew point. A total of 238 perovskite solar cells were fabricated, and their photovoltaic parameters and dew points were collected from March to December 2023. The collected data were used to train various tree-based machine learning models, with the random forest model achieving the highest accuracy. The efficiencies of the perovskite solar cells fabricated in January and February 2024 were predicted with a MAPE of 4.44%. An additional Shapley Additive exPlanations analysis confirmed the significance of the dew point in the performance of perovskite solar cells.

Suggested Citation

  • Dowon Pyun & Seungtae Lee & Solhee Lee & Seok-Hyun Jeong & Jae-Keun Hwang & Kyunghwan Kim & Youngmin Kim & Jiyeon Nam & Sujin Cho & Ji-Seong Hwang & Wonkyu Lee & Sangwon Lee & Hae-Seok Lee & Donghwan , 2024. "Machine Learning-Assisted Prediction of Ambient-Processed Perovskite Solar Cells’ Performances," Energies, MDPI, vol. 17(23), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5998-:d:1532017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5998/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5998/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luyao Yan & Hao Huang & Peng Cui & Shuxian Du & Zhineng Lan & Yingying Yang & Shujie Qu & Xinxin Wang & Qiang Zhang & Benyu Liu & Xiaopeng Yue & Xing Zhao & Yingfeng Li & Haifang Li & Jun Ji & Meichen, 2023. "Fabrication of perovskite solar cells in ambient air by blocking perovskite hydration with guanabenz acetate salt," Nature Energy, Nature, vol. 8(10), pages 1158-1167, October.
    2. Jae-Keun Hwang & Seok-Hyun Jeong & Donghwan Kim & Hae-Seok Lee & Yoonmook Kang, 2023. "A Review on Dry Deposition Techniques: Pathways to Enhanced Perovskite Solar Cells," Energies, MDPI, vol. 16(16), pages 1-19, August.
    3. Hanul Min & Do Yoon Lee & Junu Kim & Gwisu Kim & Kyoung Su Lee & Jongbeom Kim & Min Jae Paik & Young Ki Kim & Kwang S. Kim & Min Gyu Kim & Tae Joo Shin & Sang Seok, 2021. "Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes," Nature, Nature, vol. 598(7881), pages 444-450, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed A. Said & Erkan Aydin & Esma Ugur & Zhaojian Xu & Caner Deger & Badri Vishal & Aleš Vlk & Pia Dally & Bumin K. Yildirim & Randi Azmi & Jiang Liu & Edward A. Jackson & Holly M. Johnson & Manting , 2024. "Sublimed C60 for efficient and repeatable perovskite-based solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zhonghui Zhu & Matyas Daboczi & Minzhi Chen & Yimin Xuan & Xianglei Liu & Salvador Eslava, 2024. "Ultrastable halide perovskite CsPbBr3 photoanodes achieved with electrocatalytic glassy-carbon and boron-doped diamond sheets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Zhou, Yi-Peng & Wang, Liang-Xu & Wang, Bo-Yi & Chen, Yang & Ran, Chen-Xin & Wu, Zhong-Bin, 2024. "Polarization management of photonic crystals to achieve synergistic optimization of optical, thermal, and electrical performance of building-integrated photovoltaic glazing," Applied Energy, Elsevier, vol. 372(C).
    4. Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
    5. Zengqi Huang & Lin Li & Tingqing Wu & Tangyue Xue & Wei Sun & Qi Pan & Huadong Wang & Hongfei Xie & Jimei Chi & Teng Han & Xiaotian Hu & Meng Su & Yiwang Chen & Yanlin Song, 2023. "Wearable perovskite solar cells by aligned liquid crystal elastomers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Omar M. Saif & Yasmine Elogail & Tarek M. Abdolkader & Ahmed Shaker & Abdelhalim Zekry & Mohamed Abouelatta & Marwa S. Salem & Mostafa Fedawy, 2023. "Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges," Energies, MDPI, vol. 16(11), pages 1-23, May.
    7. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Tianpeng Li & Bin Li & Yingguo Yang & Zuoming Jin & Zhiguo Zhang & Peilin Wang & Liangliang Deng & Yiqiang Zhan & Qinghong Zhang & Jia Liang, 2024. "Metal chalcogenide electron extraction layers for nip-type tin-based perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Michael Saliba & Eva Unger & Lioz Etgar & Jingshan Luo & T. Jesper Jacobsson, 2023. "A systematic discrepancy between the short circuit current and the integrated quantum efficiency in perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    10. Tong Wang & Jiabao Yang & Qi Cao & Xingyu Pu & Yuke Li & Hui Chen & Junsong Zhao & Yixin Zhang & Xingyuan Chen & Xuanhua Li, 2023. "Room temperature nondestructive encapsulation via self-crosslinked fluorosilicone polymer enables damp heat-stable sustainable perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Shuxian Du & Hao Huang & Zhineng Lan & Peng Cui & Liang Li & Min Wang & Shujie Qu & Luyao Yan & Changxu Sun & Yingying Yang & Xinxin Wang & Meicheng Li, 2024. "Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Jiangang Feng & Xi Wang & Jia Li & Haoming Liang & Wen Wen & Ezra Alvianto & Cheng-Wei Qiu & Rui Su & Yi Hou, 2023. "Resonant perovskite solar cells with extended band edge," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Yu Pu & Haijun Su & Congcong Liu & Min Guo & Lin Liu & Hengzhi Fu, 2023. "A Review on Buried Interface of Perovskite Solar Cells," Energies, MDPI, vol. 16(13), pages 1-30, June.
    14. Mubai Li & Riming Sun & Jingxi Chang & Jingjin Dong & Qiushuang Tian & Hongze Wang & Zihao Li & Pinghui Yang & Haokun Shi & Chao Yang & Zichao Wu & Renzhi Li & Yingguo Yang & Aifei Wang & Shitong Zhan, 2023. "Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Kyung Mun Yeom & Changsoon Cho & Eui Hyuk Jung & Geunjin Kim & Chan Su Moon & So Yeon Park & Su Hyun Kim & Mun Young Woo & Mohammed Nabaz Taher Khayyat & Wanhee Lee & Nam Joong Jeon & Miguel Anaya & S, 2024. "Quantum barriers engineering toward radiative and stable perovskite photovoltaic devices," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Jiajia Suo & Bowen Yang & Edoardo Mosconi & Dmitry Bogachuk & Tiarnan A. S. Doherty & Kyle Frohna & Dominik J. Kubicki & Fan Fu & YeonJu Kim & Oussama Er-Raji & Tiankai Zhang & Lorenzo Baldinelli & Lu, 2024. "Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests," Nature Energy, Nature, vol. 9(2), pages 172-183, February.
    17. Jiryang Kim & Dowon Pyun & Dongjin Choi & Seok-Hyun Jeong & Changhyun Lee & Jiyeon Hyun & Ha Eun Lee & Sang-Won Lee & Hoyoung Song & Solhee Lee & Donghwan Kim & Yoonmook Kang & Hae-Seok Lee, 2022. "Potential of NiO x /Nickel Silicide/n + Poly-Si Contact for Perovskite/TOPCon Tandem Solar Cells," Energies, MDPI, vol. 15(3), pages 1-11, January.
    18. Md Aslam Uddin & Prem Jyoti Singh Rana & Zhenyi Ni & Guang Yang & Mingze Li & Mengru Wang & Hangyu Gu & Hengkai Zhang & Benjia Dak Dou & Jinsong Huang, 2024. "Iodide manipulation using zinc additives for efficient perovskite solar minimodules," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Paolo Mariani & Miguel Ángel Molina-García & Jessica Barichello & Marilena Isabella Zappia & Erica Magliano & Luigi Angelo Castriotta & Luca Gabatel & Sanjay Balkrishna Thorat & Antonio Esaú Rio Casti, 2024. "Low-temperature strain-free encapsulation for perovskite solar cells and modules passing multifaceted accelerated ageing tests," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    20. Dongdong Xu & Zhiming Gong & Yue Jiang & Yancong Feng & Zhen Wang & Xingsen Gao & Xubing Lu & Guofu Zhou & Jun-Ming Liu & Jinwei Gao, 2022. "Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5998-:d:1532017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.