IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5928-d1529690.html
   My bibliography  Save this article

Analysis of Severe Scarcity Situations in Finland’s Low Carbon Electricity System Until 2030

Author

Listed:
  • Tero Koivunen

    (Department of Energy and Mechanical Engineering, School of Engineering, Aalto University, 02150 Espoo, Finland)

  • Sanna Syri

    (Department of Energy and Mechanical Engineering, School of Engineering, Aalto University, 02150 Espoo, Finland)

Abstract

This paper presents PLEXOS modelling of the Nordic and Baltic low-carbon electricity market until 2030, using a total of 35 different weather years’ (1982–2016) ERAA profiles as inputs for the modelling and focusing on the occurrence of severe electricity scarcity situations in Finland, analyzing their duration and depth. The expected development of generation and demand is modelled based on available authoritative sources, such as ENTSO-E TYNDP and national projections. The present amount of nuclear power in Finland and growing amounts of wind and solar generation across the Nordic electricity system are modelled. This study analyzes scarcity situations by calculating residual loads and the expected electricity spot market prices assuming the different weather years with the generation fleet and demand in 2024 and 2030 scenarios. This study finds that, despite the very significantly growing amount of variable renewable generation (42.5 TWh/a increase in wind generation from 2024 to 2030 in Finland only), the frequency and severity of scarcity situations will increase from 2024 to 2030. The main reasons are the retirement of Combined Heat and Power plants and the transition to more electrified district heating in Finland and the expected demand growth. The findings indicate that without further measures Finland is not sufficiently prepared for cold winter periods with high heating and electricity demand and events of serious scarcity can occur.

Suggested Citation

  • Tero Koivunen & Sanna Syri, 2024. "Analysis of Severe Scarcity Situations in Finland’s Low Carbon Electricity System Until 2030," Energies, MDPI, vol. 17(23), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5928-:d:1529690
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5928/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5928/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaakko J. Jääskeläinen & Sakari Höysniemi & Sanna Syri & Veli-Pekka Tynkkynen, 2018. "Finland’s Dependence on Russian Energy—Mutually Beneficial Trade Relations or an Energy Security Threat?," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    2. Johannes Hyvönen & Tero Koivunen & Sanna Syri, 2024. "Review of Climate Strategies in Northern Europe: Exposure to Potential Risks and Limitations," Energies, MDPI, vol. 17(7), pages 1-17, March.
    3. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    2. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    3. Jaakko Jääskeläinen & Kaisa Huhta & Sanna Syri, 2022. "The Anatomy of Unaffordable Electricity in Northern Europe in 2021," Energies, MDPI, vol. 15(20), pages 1-18, October.
    4. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    5. Noora Veijalainen & Lauri Ahopelto & Mika Marttunen & Jaakko Jääskeläinen & Ritva Britschgi & Mirjam Orvomaa & Antti Belinskij & Marko Keskinen, 2019. "Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts," Sustainability, MDPI, vol. 11(8), pages 1-26, April.
    6. Canales, Fausto A. & Sapiega, Patryk & Kasiulis, Egidijus & Jonasson, Erik & Temiz, Irina & Jurasz, Jakub, 2024. "Temporal dynamics and extreme events in solar, wind, and wave energy complementarity: Insights from the Polish Exclusive Economic Zone," Energy, Elsevier, vol. 305(C).
    7. Çam , Eren & Lencz, Dominic, 2020. "Pricing short-term gas transmission capacity: A theoretical approach to understand the diverse effects of the multiplier system," EWI Working Papers 2020-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Çam, Eren & Lencz, Dominic, 2021. "Pricing short-term gas transmission capacity: A theoretical approach to understand the diverse effects of the multiplier system," Energy Economics, Elsevier, vol. 95(C).
    9. Sohail, Muhammad Tayyab & Din, Norashidah Md, 2024. "How do digital inclusion and energy security risks affect mineral resources trade? Evidence from world-leading mineral trading countries," Resources Policy, Elsevier, vol. 89(C).
    10. Marko Keskinen & Suvi Sojamo & Olli Varis, 2019. "Enhancing Security, Sustainability and Resilience in Energy, Food and Water," Sustainability, MDPI, vol. 11(24), pages 1-8, December.
    11. Cui, Lianbiao & Yue, Suyun & Nghiem, Xuan-Hoa & Duan, Mei, 2023. "Exploring the risk and economic vulnerability of global energy supply chain interruption in the context of Russo-Ukrainian war," Resources Policy, Elsevier, vol. 81(C).
    12. Tran, Thuc Han & Egermann, Markus, 2022. "Land-use implications of energy transition pathways towards decarbonisation – Comparing the footprints of Vietnam, New Zealand and Finland," Energy Policy, Elsevier, vol. 166(C).
    13. Lempinen, Hanna, 2019. "“Barely surviving on a pile of gold”: Arguing for the case of peat energy in 2010s Finland," Energy Policy, Elsevier, vol. 128(C), pages 1-7.
    14. Tomasz Rokicki & Piotr Bórawski & András Szeberényi, 2023. "The Impact of the 2020–2022 Crises on EU Countries’ Independence from Energy Imports, Particularly from Russia," Energies, MDPI, vol. 16(18), pages 1-26, September.
    15. Martínez-García, Miguel Á. & Ramos-Carvajal, Carmen & Cámara, Ángeles, 2023. "Consequences of the energy measures derived from the war in Ukraine on the level of prices of EU countries," Resources Policy, Elsevier, vol. 86(PB).
    16. Tomasz Rokicki & Aleksandra Perkowska, 2021. "Diversity and Changes in the Energy Balance in EU Countries," Energies, MDPI, vol. 14(4), pages 1-19, February.
    17. Potisomporn, Panit & Adcock, Thomas A.A. & Vogel, Christopher R., 2024. "Extreme value analysis of wind droughts in Great Britain," Renewable Energy, Elsevier, vol. 221(C).
    18. Pylsy, Petri & Lylykangas, Kimmo & Kurnitski, Jarek, 2020. "Buildings’ energy efficiency measures effect on CO2 emissions in combined heating, cooling and electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5928-:d:1529690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.