IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5913-d1529025.html
   My bibliography  Save this article

AVR Fractional-Order Controller Based on Caputo–Fabrizio Fractional Derivatives and Integral Operators

Author

Listed:
  • Andriy Lozynskyy

    (Faculty of Transport, Electrical Engineering and Computer Science, Casimir Pulaski Radom University, 26-600 Radom, Poland
    Institute of Power Engineering and Control System, Lviv Polytechnic National University, 79-013 Lviv, Ukraine)

  • Jacek Kozyra

    (Faculty of Transport, Electrical Engineering and Computer Science, Casimir Pulaski Radom University, 26-600 Radom, Poland)

  • Andriy Kutsyk

    (Institute of Power Engineering and Control System, Lviv Polytechnic National University, 79-013 Lviv, Ukraine
    Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland)

  • Zbigniew Łukasik

    (Faculty of Transport, Electrical Engineering and Computer Science, Casimir Pulaski Radom University, 26-600 Radom, Poland)

  • Aldona Kuśmińska-Fijałkowska

    (Faculty of Transport, Electrical Engineering and Computer Science, Casimir Pulaski Radom University, 26-600 Radom, Poland)

  • Lidiia Kasha

    (Institute of Power Engineering and Control System, Lviv Polytechnic National University, 79-013 Lviv, Ukraine)

  • Andriy Lishchuk

    (Institute of Power Engineering and Control System, Lviv Polytechnic National University, 79-013 Lviv, Ukraine)

Abstract

The application of a fractional-order controller (FOC) using the Caputo–Fabrizio representation in the automatic voltage regulation (AVR) system of a synchronous generator is shown in this paper. The mathematical model of the system is created and the adequacy of the model is confirmed. The efficiency of the proposed regulator in different operating regimes is demonstrated. In particular, the proposed controller improves voltage regulation in a wide range of changes in the coordinates that characterize the power system operation mode, and it increases the system’s robustness to both uncertainties and nonlinearities that often occur in power systems. The synthesized fractional-order regulator provides higher response and control accuracy compared to traditional regulators used in automatic voltage regulation (AVR) systems.

Suggested Citation

  • Andriy Lozynskyy & Jacek Kozyra & Andriy Kutsyk & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Lidiia Kasha & Andriy Lishchuk, 2024. "AVR Fractional-Order Controller Based on Caputo–Fabrizio Fractional Derivatives and Integral Operators," Energies, MDPI, vol. 17(23), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5913-:d:1529025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5913/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    2. Sherrell R. Greene, 2020. "How Nuclear Power Can Transform Electric Grid and Critical Infrastructure Resilience," Journal of Critical Infrastructure Policy, John Wiley & Sons, vol. 1(2), pages 37-72, September.
    3. Marques, António Cardoso & Junqueira, Thibaut Manuel, 2022. "European energy transition: Decomposing the performance of nuclear power," Energy, Elsevier, vol. 245(C).
    4. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    5. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    6. Glynos, Dimitrios & Scharf, Hendrik, 2024. "Postponing Germany’s nuclear phase-out: A smart move in the European energy crisis?," Energy Policy, Elsevier, vol. 192(C).
    7. Rodica Loisel & Lionel Lemiale & Silvana Mima & Adrien Bidaud, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Post-Print hal-04568072, HAL.
    8. Lynch, Arthur & Perez, Yannick & Gabriel, Sophie & Mathonniere, Gilles, 2022. "Nuclear fleet flexibility: Modeling and impacts on power systems with renewable energy," Applied Energy, Elsevier, vol. 314(C).
    9. Rob Hovsapian & Julian D. Osorio & Mayank Panwar & Chryssostomos Chryssostomidis & Juan C. Ordonez, 2021. "Grid-Scale Ternary-Pumped Thermal Electricity Storage for Flexible Operation of Nuclear Power Generation under High Penetration of Renewable Energy Sources," Energies, MDPI, vol. 14(13), pages 1-15, June.
    10. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    11. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    12. Rodríguez-Sarasty, Jesús A. & Debia, Sébastien & Pineau, Pierre-Olivier, 2021. "Deep decarbonization in Northeastern North America: The value of electricity market integration and hydropower," Energy Policy, Elsevier, vol. 152(C).
    13. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    14. Chunning Na & Huan Pan & Yuhong Zhu & Jiahai Yuan & Lixia Ding & Jungang Yu, 2019. "The Flexible Operation of Coal Power and Its Renewable Integration Potential in China," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    15. Gronier, Timothé & Fitó, Jaume & Franquet, Erwin & Gibout, Stéphane & Ramousse, Julien, 2022. "Iterative sizing of solar-assisted mixed district heating network and local electrical grid integrating demand-side management," Energy, Elsevier, vol. 238(PA).
    16. Price, James & Keppo, Ilkka & Dodds, Paul E., 2023. "The role of new nuclear power in the UK's net-zero emissions energy system," Energy, Elsevier, vol. 262(PA).
    17. Yuan, Mengyao & Tong, Fan & Duan, Lei & Dowling, Jacqueline A. & Davis, Steven J. & Lewis, Nathan S. & Caldeira, Ken, 2020. "Would firm generators facilitate or deter variable renewable energy in a carbon-free electricity system?," Applied Energy, Elsevier, vol. 279(C).
    18. Ricks, Wilson & Norbeck, Jack & Jenkins, Jesse, 2022. "The value of in-reservoir energy storage for flexible dispatch of geothermal power," Applied Energy, Elsevier, vol. 313(C).
    19. Qiu, Leilei & Liao, Shengyong & Fan, Sui & Sun, Peiwei & Wei, Xinyu, 2023. "Dynamic modelling and control system design of micro-high-temperature gas-cooled reactor with helium brayton cycle," Energy, Elsevier, vol. 278(PB).
    20. El-Emam, Rami S. & Constantin, Alina & Bhattacharyya, Rupsha & Ishaq, Haris & Ricotti, Marco E., 2024. "Nuclear and renewables in multipurpose integrated energy systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5913-:d:1529025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.