IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v192y2024ics1364032123010158.html
   My bibliography  Save this article

Nuclear and renewables in multipurpose integrated energy systems: A critical review

Author

Listed:
  • El-Emam, Rami S.
  • Constantin, Alina
  • Bhattacharyya, Rupsha
  • Ishaq, Haris
  • Ricotti, Marco E.

Abstract

Integrated energy systems for multi-purpose applications are garnering increased interest in the international nuclear energy community, energy system designers and planners and decision makers in the context of deep decarbonization and net zero targets. They are expected to reduce costs and increase flexibility in operation of nuclear reactors when coupled with intermittent renewable energy sources, while also producing various commodities such as hydrogen or potable water. Adaptive solutions must be considered for each geographical area and based on the involved components of the energy system, available infrastructure, and policy in place. This paper provides an in-depth look at the strengths, weaknesses, opportunities, and threats of such systems, while addressing different aspects related to the creation of the business case for such systems including decentralization and digitalization of future energy systems. The regulatory aspects are the ones that impose challenges on the emerging hybrid energy systems and this paper highlights some of the considerations that are needed for the couplings involved, in terms of licensing procedures and safety analysis. The potential contribution of such integrated energy systems towards achieving the United Nations Sustainable Development Goals (UN SDGs) are also discussed. Concerning the stakeholders, special attention should be paid to building social acceptance and trust as this lays the foundation for successful implementation of such projects. By focusing on areas such as research and development, integration of technologies, policy support, market development, grid integration, energy storage, efficiency improvement, system modelling and simulations, significant advances in integrated/hybrid energy systems deployment can be achieved.

Suggested Citation

  • El-Emam, Rami S. & Constantin, Alina & Bhattacharyya, Rupsha & Ishaq, Haris & Ricotti, Marco E., 2024. "Nuclear and renewables in multipurpose integrated energy systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010158
    DOI: 10.1016/j.rser.2023.114157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sven Heim & Bastian Krieger & Mario Liebensteiner, 2020. "Unbundling, Regulation, and Pricing: Evidence from Electricity Distribution," The Energy Journal, , vol. 41(1_suppl), pages 93-118, June.
    2. Luskin, Robert C. & Fishkin, James S. & Jowell, Roger, 2002. "Considered Opinions: Deliberative Polling in Britain," British Journal of Political Science, Cambridge University Press, vol. 32(3), pages 455-487, July.
    3. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    4. Kim, Jong Suk & Boardman, Richard D. & Bragg-Sitton, Shannon M., 2018. "Dynamic performance analysis of a high-temperature steam electrolysis plant integrated within nuclear-renewable hybrid energy systems," Applied Energy, Elsevier, vol. 228(C), pages 2090-2110.
    5. Chung, Ji-Bum & Kim, Eun-Sung, 2018. "Public perception of energy transition in Korea: Nuclear power, climate change, and party preference," Energy Policy, Elsevier, vol. 116(C), pages 137-144.
    6. William McDonough, 2016. "Carbon is not the enemy," Nature, Nature, vol. 539(7629), pages 349-351, November.
    7. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    8. Faye Steiner, 2000. "Regulation, Industry Structure and Performance in the Electricity Supply Industry," OECD Economics Department Working Papers 238, OECD Publishing.
    9. Supersberger, Nikolaus & Führer, Laura, 2011. "Integration of renewable energies and nuclear power into North African Energy Systems: An analysis of energy import and export effects," Energy Policy, Elsevier, vol. 39(8), pages 4458-4465, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Mou & Yan, Rujing & Zhang, Jing & Fan, Junqiu & Wang, Jiangjiang & Bai, Zhang & He, Yu & Cao, Guoqiang & Hu, Keling, 2024. "An enhanced stochastic optimization for more flexibility on integrated energy system with flexible loads and a high penetration level of renewables," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung, Ji-Bum, 2020. "Public deliberation on the national nuclear energy policy in Korea – Small successes but bigger challenges," Energy Policy, Elsevier, vol. 145(C).
    2. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    3. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    4. Michael J. Fell & Alexandra Schneiders & David Shipworth, 2019. "Consumer Demand for Blockchain-Enabled Peer-to-Peer Electricity Trading in the United Kingdom: An Online Survey Experiment," Energies, MDPI, vol. 12(20), pages 1-25, October.
    5. Boyu Liu & Xiameng Si & Haiyan Kang, 2022. "A Literature Review of Blockchain-Based Applications in Supply Chain," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    6. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    7. Shih, Hsin-Chin, 2007. "Evaluating the prospective effects of alternative regulatory policies on the investment behaviour and environmental performance of a newly liberalised electricity industry in Taiwan," Socio-Economic Planning Sciences, Elsevier, vol. 41(4), pages 320-335, December.
    8. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    9. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    10. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    11. Athanasios Ioannis Arvanitidis & Vivek Agarwal & Miltiadis Alamaniotis, 2023. "Nuclear-Driven Integrated Energy Systems: A State-of-the-Art Review," Energies, MDPI, vol. 16(11), pages 1-23, May.
    12. Schinckus, Christophe, 2022. "A Nuanced perspective on blockchain technology and healthcare," Technology in Society, Elsevier, vol. 71(C).
    13. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    14. Panagiota Xanthopoulou, 2022. "Blockchain and the digital transformation of the public sector: The Greek experience," Technium Social Sciences Journal, Technium Science, vol. 32(1), pages 558-570, June.
    15. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    16. Mahmoona Khalil & Kausar Fiaz Khawaja & Muddassar Sarfraz, 2022. "The adoption of blockchain technology in the financial sector during the era of fourth industrial revolution: a moderated mediated model," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2435-2452, August.
    17. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    18. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    19. Vitalii Stashuk, 2021. "Some Directions In The Interpretation Of Regionalization," Medzinarodne vztahy (Journal of International Relations), Ekonomická univerzita, Fakulta medzinárodných vzťahov, vol. 19(3), pages 264-274.
    20. Vítor Marques & Isabel Soares & Adelino Fortunato, 2012. "Application of a Structural Model to the Spanish Electricity Wholesale Market," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 65-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.