IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5855-d1526968.html
   My bibliography  Save this article

Dynamic Prediction of Proton-Exchange Membrane Fuel Cell Degradation Based on Gated Recurrent Unit and Grey Wolf Optimization

Author

Listed:
  • Xiangdong Wang

    (Huizhou Power Supply Bureau, Guangdong Power Grid Corporation, Huizhou 516000, China)

  • Zerong Huang

    (Huizhou Power Supply Bureau, Guangdong Power Grid Corporation, Huizhou 516000, China)

  • Daxing Zhang

    (Huizhou Power Supply Bureau, Guangdong Power Grid Corporation, Huizhou 516000, China)

  • Haoyu Yuan

    (Huizhou Power Supply Bureau, Guangdong Power Grid Corporation, Huizhou 516000, China)

  • Bingzi Cai

    (Huizhou Power Supply Bureau, Guangdong Power Grid Corporation, Huizhou 516000, China)

  • Hanlin Liu

    (Huizhou Power Supply Bureau, Guangdong Power Grid Corporation, Huizhou 516000, China)

  • Chunsheng Wang

    (School of Automation, Central South University, Changsha 410083, China)

  • Yuan Cao

    (School of Automation, Central South University, Changsha 410083, China)

  • Xinyao Zhou

    (School of Automation, Central South University, Changsha 410083, China)

  • Yaolin Dong

    (School of Automation, Central South University, Changsha 410083, China)

Abstract

This paper addresses the challenge of degradation prediction in proton-exchange membrane fuel cells (PEMFCs). Traditional methods often struggle to balance accuracy and complexity, particularly under dynamic operational conditions. To overcome these limitations, this study proposes a data-driven approach based on the gated recurrent unit (GRU) neural network, optimized by the grey wolf optimizer (GWO). The integration of the GWO automates the hyperparameter tuning process, enhancing the predictive performance of the GRU network. The proposed GWO-GRU method was validated utilizing actual PEMFC data under dynamic load conditions. The results demonstrate that the GWO-GRU method achieves superior accuracy compared to other standard methods. The method offers a practical solution for online PEMFC degradation prediction, providing stable and accurate forecasting for PEMFC systems in dynamic environments.

Suggested Citation

  • Xiangdong Wang & Zerong Huang & Daxing Zhang & Haoyu Yuan & Bingzi Cai & Hanlin Liu & Chunsheng Wang & Yuan Cao & Xinyao Zhou & Yaolin Dong, 2024. "Dynamic Prediction of Proton-Exchange Membrane Fuel Cell Degradation Based on Gated Recurrent Unit and Grey Wolf Optimization," Energies, MDPI, vol. 17(23), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5855-:d:1526968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benaggoune, Khaled & Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine, 2022. "A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 313(C).
    2. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    3. Tao, Zihan & Zhang, Chu & Xiong, Jinlin & Hu, Haowen & Ji, Jie & Peng, Tian & Nazir, Muhammad Shahzad, 2023. "Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC," Applied Energy, Elsevier, vol. 336(C).
    4. Xuan Meng & Jian Mei & Xingwang Tang & Jinhai Jiang & Chuanyu Sun & Kai Song, 2024. "The Degradation Prediction of Proton Exchange Membrane Fuel Cell Performance Based on a Transformer Model," Energies, MDPI, vol. 17(12), pages 1-13, June.
    5. Jian Mei & Xuan Meng & Xingwang Tang & Heran Li & Hany Hasanien & Mohammed Alharbi & Zhen Dong & Jiabin Shen & Chuanyu Sun & Fulin Fan & Jinhai Jiang & Kai Song, 2024. "An Accurate Parameter Estimation Method of the Voltage Model for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 17(12), pages 1-21, June.
    6. Lu Liu & Wei Sun & Chuanxu Yue & Yunhai Zhu & Weihuan Xia, 2024. "Remaining Useful Life Estimation of Lithium-Ion Batteries Based on Small Sample Models," Energies, MDPI, vol. 17(19), pages 1-17, October.
    7. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    2. Chen, Dongfang & Wu, Wenlong & Chang, Kuanyu & Li, Yuehua & Pei, Pucheng & Xu, Xiaoming, 2023. "Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization," Energy, Elsevier, vol. 285(C).
    3. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    4. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    5. Yu, Yang & Yu, Qinghua & Luo, RunSen & Chen, Sheng & Yang, Jiebo & Yan, Fuwu, 2024. "Degradation and polarization curve prediction of proton exchange membrane fuel cells: An interpretable model perspective," Applied Energy, Elsevier, vol. 365(C).
    6. He, Wenbin & Liu, Ting & Ming, Wuyi & Li, Zongze & Du, Jinguang & Li, Xiaoke & Guo, Xudong & Sun, Peiyan, 2024. "Progress in prediction of remaining useful life of hydrogen fuel cells based on deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Xuan Meng & Jian Mei & Xingwang Tang & Jinhai Jiang & Chuanyu Sun & Kai Song, 2024. "The Degradation Prediction of Proton Exchange Membrane Fuel Cell Performance Based on a Transformer Model," Energies, MDPI, vol. 17(12), pages 1-13, June.
    8. Zhang, Xuexia & Huang, Lei & Jiang, Yu & Lin, Long & Liao, Hongbo & Liu, Wentao, 2024. "Investigation of nonlinear accelerated degradation mechanism in fuel cell stack under dynamic driving cycles from polarization processes," Applied Energy, Elsevier, vol. 355(C).
    9. Lv, Jianfeng & Shen, Xiaoning & Gao, Yabin & Liu, Jianxing & Sun, Guanghui, 2024. "The seasonal-trend disentangle based prognostic framework for PEM fuel cells," Renewable Energy, Elsevier, vol. 228(C).
    10. Zhang, Chu & Hu, Haowen & Ji, Jie & Liu, Kang & Xia, Xin & Nazir, Muhammad Shahzad & Peng, Tian, 2023. "An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC," Applied Energy, Elsevier, vol. 330(PA).
    11. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
    12. Wang, Shunli & Wu, Fan & Takyi-Aninakwa, Paul & Fernandez, Carlos & Stroe, Daniel-Ioan & Huang, Qi, 2023. "Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-curren," Energy, Elsevier, vol. 284(C).
    13. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    15. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
    16. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    17. Song, Houde & Liu, Xiaojing & Song, Meiqi, 2023. "Comparative study of data-driven and model-driven approaches in prediction of nuclear power plants operating parameters," Applied Energy, Elsevier, vol. 341(C).
    18. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    19. Danqi Su & Jiayang Zheng & Junjie Ma & Zizhe Dong & Zhangjie Chen & Yanzhou Qin, 2023. "Application of Machine Learning in Fuel Cell Research," Energies, MDPI, vol. 16(11), pages 1-32, May.
    20. Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5855-:d:1526968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.