IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i22p5578-d1516604.html
   My bibliography  Save this article

Review on the Application of Living PSA in Nuclear Power

Author

Listed:
  • Min Zhang

    (China Nuclear Power Engineering Co., Ltd., Beijing 100840, China)

  • Zhao Xu

    (China Nuclear Power Engineering Co., Ltd., Beijing 100840, China)

  • Guichang Zhang

    (School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China)

  • Binbin Wang

    (School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China)

  • Bin Zhang

    (School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China)

  • Yilong Liu

    (School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

With the increasing standards of safety management in nuclear power plants, Living Probabilistic Safety Assessment (Living PSA) technology has begin to play an increasingly important role in their operation. This paper aims to provide an overview of the application and development of Living Probabilistic Safety Assessment (Living PSA) technology in nuclear power plant safety monitoring and risk assessment, examining the key technologies and future challenges. Initially, we summarize the current safety needs in regard to nuclear power, examine the policy on configuration risk management technology for nuclear power plants, and outline its importance and development process in nuclear power plant safety management. Subsequently, we discuss the basic principle of Living PSAs and the working method of risk monitoring based on Living PSAs, including information monitoring data collection, online identification, real-time model updating, and risk calculation. Within the Living PSA framework, model development is not merely about creating a theoretical or static representation; it is a dynamic and ongoing process that involves a deep understanding and precise simulation of the behavior of nuclear power plant systems and components. This represents the main research efforts in Living PSAs at present. Additionally, this paper identifies the key technologies of Living PSAs in an in-depth manner, such as the reliability-model-updating technology and model building in dynamic reliability analyses, including the fault tree model, multi-layer flow model, GO-FLOW model etc. The paper lists the work of some scholars in this area in recent years, which helps readers and researchers to clearly understand the current progress of Living PSA technologies in terms of model establishment and updating. Finally, the paper summarizes the challenges and future development of Living PSA and emphasizes the possible problems in data quality, human factor engineering, and the development of Living PSA technologies in the future. In the future, Living PSAs will provide more solid support for the realization of safer and more economical methods of operating nuclear power plants.

Suggested Citation

  • Min Zhang & Zhao Xu & Guichang Zhang & Binbin Wang & Bin Zhang & Yilong Liu, 2024. "Review on the Application of Living PSA in Nuclear Power," Energies, MDPI, vol. 17(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5578-:d:1516604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/22/5578/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/22/5578/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chunyuan Zhang & Pengyu Chen & Fangling Jiang & Jinsen Xie & Tao Yu, 2023. "Fault Diagnosis of Nuclear Power Plant Based on Sparrow Search Algorithm Optimized CNN-LSTM Neural Network," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Doguc, Ozge & Ramirez-Marquez, Jose Emmanuel, 2009. "A generic method for estimating system reliability using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 542-550.
    3. Kessides, Ioannis N., 2012. "The future of the Nuclear industry reconsidered : risks, uncertainties, and continued potential," Policy Research Working Paper Series 6112, The World Bank.
    4. Mustakimah Mohamed & Nur Diyana Zakuan & Tengku Nur Adibah Tengku Hassan & Serene Sow Mun Lock & Azmi Mohd Shariff, 2024. "Global Development and Readiness of Nuclear Fusion Technology as the Alternative Source for Clean Energy Supply," Sustainability, MDPI, vol. 16(10), pages 1-37, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaeyoung Lim & Kuk-Kyoung Moon, 2021. "Can Political Trust Weaken the Relationship between Perceived Environmental Threats and Perceived Nuclear Threats? Evidence from South Korea," IJERPH, MDPI, vol. 18(18), pages 1-13, September.
    2. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    3. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    4. Youngho CHANG & Yanfei LI, 2014. "Non-renewable Resources in Asian Economies: Perspective of Availability, Applicability Acceptability, and Affordability," Working Papers DP-2014-04, Economic Research Institute for ASEAN and East Asia (ERIA).
    5. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    6. Brookes, Naomi J. & Locatelli, Giorgio, 2015. "Power plants as megaprojects: Using empirics to shape policy, planning, and construction management," Utilities Policy, Elsevier, vol. 36(C), pages 57-66.
    7. Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
    8. Contu, Davide & Strazzera, Elisabetta & Mourato, Susana, 2016. "Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy," Ecological Economics, Elsevier, vol. 127(C), pages 37-58.
    9. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    10. Y-F Wang & M Xie & M S Habibullah & K-M Ng, 2011. "Quantitative risk assessment through hybrid causal logic approach," Journal of Risk and Reliability, , vol. 225(3), pages 323-332, September.
    11. Froese, Sarah & Kunz, Nadja C. & Ramana, M.V., 2020. "Too small to be viable? The potential market for small modular reactors in mining and remote communities in Canada," Energy Policy, Elsevier, vol. 144(C).
    12. Gangyang, Zheng & Xianke, Peng & Xiaozhen, Li & Yexi, Kang & Xiangeng, Zhao, 2021. "Research on the standardization strategy of China's nuclear industry," Energy Policy, Elsevier, vol. 155(C).
    13. Saurabh Prabhu & Mohammad Javanbarg & Marc Lehmann & Sez Atamturktur, 2019. "Multi-peril risk assessment for business downtime of industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1327-1356, July.
    14. Berthélemy, Michel & Escobar Rangel, Lina, 2015. "Nuclear reactors' construction costs: The role of lead-time, standardization and technological progress," Energy Policy, Elsevier, vol. 82(C), pages 118-130.
    15. Zheng, Yi-Xuan & Xiahou, Tangfan & Liu, Yu & Xie, Chaoyang, 2021. "Structure function learning of hierarchical multi-state systems with incomplete observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Bjorkman, Kim, 2013. "Solving dynamic flowgraph methodology models using binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 206-216.
    17. Pablo Fernández-Arias & Diego Vergara & Álvaro Antón-Sancho, 2023. "Bibliometric Review and Technical Summary of PWR Small Modular Reactors," Energies, MDPI, vol. 16(13), pages 1-15, July.
    18. Andrews, John & Fecarotti, Claudia, 2017. "System design and maintenance modelling for safety in extended life operation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 95-108.
    19. Amrin, Andas & Zarikas, Vasileios & Spitas, Christos, 2018. "Reliability analysis and functional design using Bayesian networks generated automatically by an “Idea Algebra†framework," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 211-225.
    20. Gallo-Rivera, María Teresa & Mancha-Navarro, Tomás & Garrido-Yserte, Rubén, 2013. "Application of the counterfactual method to assess of the local economic impact of a nuclear power station," Energy Policy, Elsevier, vol. 62(C), pages 1481-1492.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:22:p:5578-:d:1516604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.