IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v105y2017icp191-201.html
   My bibliography  Save this article

Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach

Author

Listed:
  • Mosannenzadeh, Farnaz
  • Di Nucci, Maria Rosaria
  • Vettorato, Daniele

Abstract

Successful implementation of smart energy city projects in Europe is crucial for a sustainable transition of urban energy systems and the improvement of quality of life for citizens. We aim to develop a systematic classification and analysis of the barriers hindering successful implementation of smart energy city projects. Through an empirical approach, we investigated 43 communities implementing smart and sustainable energy city projects under the Sixth and Seventh Framework Programmes of the European Union. Validated through literature review, we identified 35 barriers categorized in policy, administrative, legal, financial, market, environmental, technical, social, and information-and-awareness dimensions. We prioritized these barriers, using a novel multi-dimensional methodology that simultaneously analyses barriers based on frequency, level of impact, causal relationship among barriers, origin, and scale. The results indicate that the key barriers are lacking or fragmented political support on the long term at the policy level, and lack of good cooperation and acceptance among project partners, insufficient external financial support, lack of skilled and trained personnel, and fragmented ownership at the project level. The outcome of the research should aid policy-makers to better understand and prioritize implementation barriers to develop effective action and policy interventions towards more successful implementation of smart energy city projects.

Suggested Citation

  • Mosannenzadeh, Farnaz & Di Nucci, Maria Rosaria & Vettorato, Daniele, 2017. "Identifying and prioritizing barriers to implementation of smart energy city projects in Europe: An empirical approach," Energy Policy, Elsevier, vol. 105(C), pages 191-201.
  • Handle: RePEc:eee:enepol:v:105:y:2017:i:c:p:191-201
    DOI: 10.1016/j.enpol.2017.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517300782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nichols, Albert L., 1994. "Demand-side management Overcoming market barriers or obscuring real costs?," Energy Policy, Elsevier, vol. 22(10), pages 840-847, October.
    2. Wright, Daniel G. & Dey, Prasanta K. & Brammer, John, 2014. "A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK," Energy, Elsevier, vol. 71(C), pages 332-345.
    3. Jane Ellis & Sami Kamel, 2007. "Overcoming Barriers to Clean Development Mechanism Projects," OECD Papers, OECD Publishing, vol. 7(1), pages 1-50.
    4. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    5. Ren, Jingzheng & Tan, Shiyu & Goodsite, Michael Evan & Sovacool, Benjamin K. & Dong, Lichun, 2015. "Sustainability, shale gas, and energy transition in China: Assessing barriers and prioritizing strategic measures," Energy, Elsevier, vol. 84(C), pages 551-562.
    6. Marle, Franck & Vidal, Ludovic-Alexandre & Bocquet, Jean-Claude, 2013. "Interactions-based risk clustering methodologies and algorithms for complex project management," International Journal of Production Economics, Elsevier, vol. 142(2), pages 225-234.
    7. Rohdin, P. & Thollander, P., 2006. "Barriers to and driving forces for energy efficiency in the non-energy intensive manufacturing industry in Sweden," Energy, Elsevier, vol. 31(12), pages 1836-1844.
    8. Weber, Lukas, 1997. "Some reflections on barriers to the efficient use of energy," Energy Policy, Elsevier, vol. 25(10), pages 833-835, August.
    9. Nagesha, N. & Balachandra, P., 2006. "Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process," Energy, Elsevier, vol. 31(12), pages 1969-1983.
    10. Alberto Vanolo, 2014. "Smartmentality: The Smart City as Disciplinary Strategy," Urban Studies, Urban Studies Journal Limited, vol. 51(5), pages 883-898, April.
    11. Du, Ping & Zheng, Li-Qun & Xie, Bai-Chen & Mahalingam, Arjun, 2014. "Barriers to the adoption of energy-saving technologies in the building sector: A survey study of Jing-jin-tang, China," Energy Policy, Elsevier, vol. 75(C), pages 206-216.
    12. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    13. Reddy, Sudhakar & Painuly, J.P, 2004. "Diffusion of renewable energy technologies—barriers and stakeholders’ perspectives," Renewable Energy, Elsevier, vol. 29(9), pages 1431-1447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Yuan & Bai, Xuemei, 2023. "What EV users say about policy efficacy: Evidence from Shanghai," Transport Policy, Elsevier, vol. 132(C), pages 16-26.
    2. Eunji Kim & Yoonhee Ha, 2021. "Vitalization Strategies for the Building Energy Management System (BEMS) Industry Ecosystem Based on AHP Analysis," Energies, MDPI, vol. 14(9), pages 1-16, April.
    3. Fabio De Felice & Marta Travaglioni & Antonella Petrillo, 2021. "Innovation Trajectories for a Society 5.0," Data, MDPI, vol. 6(11), pages 1-30, November.
    4. Yuting Qi & Queena Qian & Frits Meijer & Henk Visscher, 2020. "Causes of Quality Failures in Building Energy Renovation Projects of Northern China: A Review and Empirical Study," Energies, MDPI, vol. 13(10), pages 1-19, May.
    5. Bhatt, Brijesh & Singh, Anoop, 2021. "Power sector reforms and technology adoption in the Indian electricity distribution sector," Energy, Elsevier, vol. 215(PA).
    6. Dhanasingh Sivalinga Vijayan & Eugeniusz Koda & Arvindan Sivasuriyan & Jan Winkler & Parthiban Devarajan & Ramamoorthy Sanjay Kumar & Aleksandra Jakimiuk & Piotr Osinski & Anna Podlasek & Magdalena Da, 2023. "Advancements in Solar Panel Technology in Civil Engineering for Revolutionizing Renewable Energy Solutions—A Review," Energies, MDPI, vol. 16(18), pages 1-33, September.
    7. Naber, Rolf & Raven, Rob & Kouw, Matthijs & Dassen, Ton, 2017. "Scaling up sustainable energy innovations," Energy Policy, Elsevier, vol. 110(C), pages 342-354.
    8. Diogo Correia & Leonor Teixeira & João Lourenço Marques, 2021. "Reviewing the State-of-the-Art of Smart Cities in Portugal: Evidence Based on Content Analysis of a Portuguese Magazine," Publications, MDPI, vol. 9(4), pages 1-30, October.
    9. Edeltraud Haselsteiner & Blerta Vula Rizvanolli & Paola Villoria Sáez & Odysseas Kontovourkis, 2021. "Drivers and Barriers Leading to a Successful Paradigm Shift toward Regenerative Neighborhoods," Sustainability, MDPI, vol. 13(9), pages 1-22, May.
    10. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.
    11. Navidreza Alizadeh Bazrafshan & Omid Ali Kharazmi, 2022. "Contextual challenges of smart city implementation in Mashhad, Iran's second‐largest metropolis," Development Policy Review, Overseas Development Institute, vol. 40(5), September.
    12. Diogo Correia & João Lourenço Marques & Leonor Teixeira, 2023. "Assessing and Ranking EU Cities Based on the Development Phase of the Smart City Concept," Sustainability, MDPI, vol. 15(18), pages 1-34, September.
    13. Mohamed Hanine & Omar Boutkhoum & Fatima El Barakaz & Mohamed Lachgar & Noureddine Assad & Furqan Rustam & Imran Ashraf, 2021. "An Intuitionistic Fuzzy Approach for Smart City Development Evaluation for Developing Countries: Moroccan Context," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    14. D’ascenzo Fabrizio & Tantau Adrian & Savastano Marco & Şanta Ana-Maria Iulia, 2019. "New Energy Policies for Smart Cities - a Comparison among Smart Cities in the European Union," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 13(1), pages 1140-1149, May.
    15. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    16. Merethe Dotterud Leiren & Stine Aakre & Kristin Linnerud & Tom Erik Julsrud & Maria-Rosaria Di Nucci & Michael Krug, 2020. "Community Acceptance of Wind Energy Developments: Experience from Wind Energy Scarce Regions in Europe," Sustainability, MDPI, vol. 12(5), pages 1-22, February.
    17. Merit Tatar & Tarmo Kalvet & Marek Tiits, 2020. "Cities4ZERO Approach to Foresight for Fostering Smart Energy Transition on Municipal Level," Energies, MDPI, vol. 13(14), pages 1-30, July.
    18. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    19. Éva Greutter-Gregus & Gábor Koncz & Kitti Némedi-Kollár, 2024. "Resource Efficiency and the Role of Renewable Energy in Miskolc: The City’s Journey Towards Becoming a Smart City," Energies, MDPI, vol. 17(21), pages 1-28, November.
    20. Niki-Artemis Spyridaki & Nikos Kleanthis & Dimitra Tzani & Mia Dragović Matosović & Alexandros Flamos, 2020. "A City Capability Assessment Framework Focusing on Planning, Financing, and Implementing Sustainable Energy Projects," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    21. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    22. Garfield Wayne Hunter & Daniele Vettorato & Gideon Sagoe, 2018. "Creating Smart Energy Cities for Sustainability through Project Implementation: A Case Study of Bolzano, Italy," Sustainability, MDPI, vol. 10(7), pages 1-29, June.
    23. Armin Razmjoo & Meysam Majidi Nezhad & Lisa Gakenia Kaigutha & Mousa Marzband & Seyedali Mirjalili & Mehdi Pazhoohesh & Saim Memon & Mehdi A. Ehyaei & Giuseppe Piras, 2021. "Investigating Smart City Development Based on Green Buildings, Electrical Vehicles and Feasible Indicators," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    24. Adalberto Santos-Júnior & Fernando Almeida-García & Paulo Morgado & Luiz Mendes-Filho, 2020. "Residents’ Quality of Life in Smart Tourism Destinations: A Theoretical Approach," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    25. Liang, Xuesheng & Ma, Linwei & Chong, Chinhao & Li, Zheng & Ni, Weidou, 2020. "Development of smart energy towns in China: Concept and practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhatt, Brijesh & Singh, Anoop, 2021. "Power sector reforms and technology adoption in the Indian electricity distribution sector," Energy, Elsevier, vol. 215(PA).
    2. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    3. Vallecha, Harshit & Bhattacharjee, Debraj & Osiri, John Kalu & Bhola, Prabha, 2021. "Evaluation of barriers and enablers through integrative multicriteria decision mapping: Developing sustainable community energy in Indian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    5. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    6. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    7. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    8. Kangas, Hanna-Liisa & Lazarevic, David & Kivimaa, Paula, 2018. "Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies," Energy Policy, Elsevier, vol. 114(C), pages 63-76.
    9. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    11. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    12. Sola, Antonio Vanderley Herrero & Mota, Caroline Maria de Miranda & Kovaleski, João Luiz, 2011. "A model for improving energy efficiency in industrial motor system using multicriteria analysis," Energy Policy, Elsevier, vol. 39(6), pages 3645-3654, June.
    13. Fredrik Backman, 2017. "Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program," Energies, MDPI, vol. 10(1), pages 1-13, January.
    14. Cooke, R. & Cripps, A. & Irwin, A. & Kolokotroni, M., 2007. "Alternative energy technologies in buildings: Stakeholder perceptions," Renewable Energy, Elsevier, vol. 32(14), pages 2320-2333.
    15. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    16. Shi, Yingying & Zeng, Yongchao & Engo, Jean & Han, Botang & Li, Yang & Muehleisen, Ralph T., 2020. "Leveraging inter-firm influence in the diffusion of energy efficiency technologies: An agent-based model," Applied Energy, Elsevier, vol. 263(C).
    17. Apriani Soepardi & Patrik Thollander, 2018. "Analysis of Relationships among Organizational Barriers to Energy Efficiency Improvement: A Case Study in Indonesia’s Steel Industry," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    18. Wuttipan Kiatruangkrai & Ekachai Leelarasmee, 2016. "Barriers to Energy Saving for Public Middle Schools in Bangkok: From School Management Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 6(3), pages 513-521.
    19. Bilous Liliia, 2020. "Determination of energy efficiency barriers taxonomy in socio-economic model of Ukraine," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 3(4(53)), pages 14-21.
    20. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst & Pugliese, Giacomo, 2013. "Empirical investigation of energy efficiency barriers in Italian manufacturing SMEs," Energy, Elsevier, vol. 49(C), pages 444-458.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:105:y:2017:i:c:p:191-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.