IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5496-d1513074.html
   My bibliography  Save this article

Comparison of Bi-Directional Topologies for On-Board Charger: A 10.9 kW High-Efficiency High Power Density of DC-DC Stage

Author

Listed:
  • Hyeong-Seok Oh

    (Department of Electrical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea)

  • Seong-Yong Hong

    (School of Railway Engineering, Korea National University of Transportation, 157, Cheoldobangmulgwan-ro, Uiwang-si 16106, Republic of Korea)

  • Ju Lee

    (Department of Electrical Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea)

  • Jae-Bum Lee

    (School of Railway Engineering, Korea National University of Transportation, 157, Cheoldobangmulgwan-ro, Uiwang-si 16106, Republic of Korea)

Abstract

In recent years, the trend in power electronics has been toward high-efficiency and high-power-density converters. Additionally, this trend has allowed electric vehicles to accommodate larger batteries, which necessitate bi-directional capabilities not only for driving but also for vehicle to grid (V2G), etc. This article proposes a comparative analysis of GaN-based bi-directional topologies, namely the dual active bridge (DAB) converter and the CLLC converter. To ensure a fair analysis of the proposed topologies, prototypes with the same target of efficiency above 97.5% and a power density of 5.5 kW/L have been constructed. This research can support the adoption of 10.9 kW bi-directional topologies in GaN-based on-board chargers (OBCs) for EVs.

Suggested Citation

  • Hyeong-Seok Oh & Seong-Yong Hong & Ju Lee & Jae-Bum Lee, 2024. "Comparison of Bi-Directional Topologies for On-Board Charger: A 10.9 kW High-Efficiency High Power Density of DC-DC Stage," Energies, MDPI, vol. 17(21), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5496-:d:1513074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manzetti, Sergio & Mariasiu, Florin, 2015. "Electric vehicle battery technologies: From present state to future systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1004-1012.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    2. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    3. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. García-Vázquez, Carlos A. & Llorens-Iborra, Francisco & Fernández-Ramírez, Luis M. & Sánchez-Sainz, Higinio & Jurado, Francisco, 2017. "Comparative study of dynamic wireless charging of electric vehicles in motorway, highway and urban stretches," Energy, Elsevier, vol. 137(C), pages 42-57.
    5. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    6. Briggs, Ian & Murtagh, Martin & Kee, Robert & McCulloug, Geoffrey & Douglas, Roy, 2017. "Sustainable non-automotive vehicles: The simulation challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 840-851.
    7. Davide Cittanti & Fabio Mandrile & Matteo Gregorio & Radu Bojoi, 2021. "Design Space Optimization of a Three-Phase LCL Filter for Electric Vehicle Ultra-Fast Battery Charging," Energies, MDPI, vol. 14(5), pages 1-26, February.
    8. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    9. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    10. Qian, Xiaodong & Gkritza, Konstantina, 2024. "Spatial and temporal variance in public perception of electric vehicles: A comparative analysis of adoption pioneers and laggards using twitter data," Transport Policy, Elsevier, vol. 149(C), pages 150-162.
    11. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Reda Cherif & Fuad Hasanov & Aditya Pande, 2021. "Riding the Energy Transition: Oil beyond 2040," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 117-137, January.
    13. Zongwei Liu & Xinglong Liu & Han Hao & Fuquan Zhao & Amer Ahmad Amer & Hassan Babiker, 2020. "Research on the Critical Issues for Power Battery Reusing of New Energy Vehicles in China," Energies, MDPI, vol. 13(8), pages 1-19, April.
    14. Bahamonde-Birke, Francisco J., 2020. "Who will bell the cat? On the environmental and sustainability risks of electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 79-81.
    15. Alegre, Susana & Míguez, Juan V. & Carpio, José, 2017. "Modelling of electric and parallel-hybrid electric vehicle using Matlab/Simulink environment and planning of charging stations through a geographic information system and genetic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1020-1027.
    16. Zhao, Ruixi & Pandyaswargo, Andante Hadi & Onoda, Hiroshi, 2024. "A bottom-up approach for greenhouse gas emission estimation at the community level: A case study in Japan," Energy, Elsevier, vol. 307(C).
    17. Wen, Jianping & Zhao, Dan & Zhang, Chuanwei, 2020. "An overview of electricity powered vehicles: Lithium-ion battery energy storage density and energy conversion efficiency," Renewable Energy, Elsevier, vol. 162(C), pages 1629-1648.
    18. Wang, Bin & Xie, Fangxi & Hong, Wei & Du, Jiakun & Chen, Hong & Li, Xiaoping, 2023. "Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure," Energy, Elsevier, vol. 282(C).
    19. Bhatti, Ghanishtha & Mohan, Harshit & Raja Singh, R., 2021. "Towards the future of smart electric vehicles: Digital twin technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Del Moretto, Deny & Colla, Valentina & Branca, Teresa Annunziata, 2017. "Sustainable mobility for campsites: The case of Macchia Lucchese," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1063-1075.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5496-:d:1513074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.