IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5475-d1512171.html
   My bibliography  Save this article

Leading Edge Erosion Classification in Offshore Wind Turbines Using Feature Extraction and Classical Machine Learning

Author

Listed:
  • Oscar Best

    (School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK)

  • Asiya Khan

    (School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK)

  • Sanjay Sharma

    (School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK)

  • Keri Collins

    (School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK)

  • Mario Gianni

    (School of Electrical Engineering, Electronics and Computer Science, University of Liverpool, Liverpool L69 3BX, UK)

Abstract

Leading edge (LE) erosion is a type of damage that inhibits the aerodynamic performance of a wind turbine, resulting in high operation and maintenance (O&M) costs. This paper makes use of a small dataset consisting of 50 images of LE erosion and healthy blades for feature extraction and the training of four types of classifiers, namely, support vector machine (SVM), random forest, K-nearest neighbour (KNN), and multi-layer perceptron (MLP). Six feature extraction methods were used with these classifiers to train 24 models. The dataset has also been used to train a convolutional neural network (CNN) model developed using Keras. The purpose of this work is to determine whether classical machine learning (ML) classifiers trained with extracted features can produce higher-accuracy results, train faster, and classify faster than deep learning (DL) models for the application of LE damage detection of wind turbine blades. The oriented fast and rotated brief (ORB)-trained SVM achieved an accuracy of 90% ± 0.01, took 80.4 s to train, and achieved inference speeds of 63 frames per second (FPS), compared to the CNN model, which achieved an accuracy of 79.4% ± 2.07, took 4667.4 s to train, and achieved an inference speed of 1.3 FPS. These results suggest that classical ML models can be more accurate and efficient than DL models if the appropriate feature extraction method is used.

Suggested Citation

  • Oscar Best & Asiya Khan & Sanjay Sharma & Keri Collins & Mario Gianni, 2024. "Leading Edge Erosion Classification in Offshore Wind Turbines Using Feature Extraction and Classical Machine Learning," Energies, MDPI, vol. 17(21), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5475-:d:1512171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeanie A. Aird & Rebecca J. Barthelmie & Sara C. Pryor, 2023. "Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images," Energies, MDPI, vol. 16(6), pages 1-23, March.
    2. Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    2. Ye, Feng & Ezzat, Ahmed Aziz, 2024. "Icing detection and prediction for wind turbines using multivariate sensor data and machine learning," Renewable Energy, Elsevier, vol. 231(C).
    3. Konstantinos Ioannou & Dimitrios Myronidis, 2021. "Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    4. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    5. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    6. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
    7. Silvio Simani & Saverio Farsoni & Paolo Castaldi, 2023. "RETRACTED: Supervisory Control and Data Acquisition for Fault Diagnosis of Wind Turbines via Deep Transfer Learning," Energies, MDPI, vol. 16(9), pages 1-22, April.
    8. Zengyi Zhang & Zhenru Shu, 2024. "Unmanned Aerial Vehicle (UAV)-Assisted Damage Detection of Wind Turbine Blades: A Review," Energies, MDPI, vol. 17(15), pages 1-31, July.
    9. Oh, So Young & Joung, Chanwoo & Lee, Seonghwan & Shim, Yoon-Bo & Lee, Dahun & Cho, Gyu-Eun & Jang, Juhyeong & Lee, In Yong & Park, Young-Bin, 2024. "Condition-based maintenance of wind turbine structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    10. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    11. Rami Al-Hajj & Ali Assi & Bilel Neji & Raymond Ghandour & Zaher Al Barakeh, 2023. "Transfer Learning for Renewable Energy Systems: A Survey," Sustainability, MDPI, vol. 15(11), pages 1-28, June.
    12. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    13. Yang, Cong & Liu, Xun & Zhou, Hua & Ke, Yan & See, John, 2023. "Towards accurate image stitching for drone-based wind turbine blade inspection," Renewable Energy, Elsevier, vol. 203(C), pages 267-279.
    14. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
    15. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Jian Wang & Jin Gao & Yong Zhang & Hongmei Cui, 2024. "Analysis of the Sand Erosion Effect and Wear Mechanism of Wind Turbine Blade Coating," Energies, MDPI, vol. 17(2), pages 1-18, January.
    17. Hang, Xinyu & Zhu, Xiaoxun & Gao, Xiaoxia & Wang, Yu & Liu, Longhu, 2024. "Study on crack monitoring method of wind turbine blade based on AI model: Integration of classification, detection, segmentation and fault level evaluation," Renewable Energy, Elsevier, vol. 224(C).
    18. Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
    19. Xu, Zifei & Bashir, Musa & Yang, Yang & Wang, Xinyu & Wang, Jin & Ekere, Nduka & Li, Chun, 2022. "Multisensory collaborative damage diagnosis of a 10 MW floating offshore wind turbine tendons using multi-scale convolutional neural network with attention mechanism," Renewable Energy, Elsevier, vol. 199(C), pages 21-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5475-:d:1512171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.