Research on Carbon Footprint Reduction During Hydrogen Co-Combustion in a Turbojet Engine
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jacek Caban & Jarosław Seńko & Piotr Ignaciuk, 2024. "Laboratory Tests of Electrical Parameters of the Start-Up Process of Single-Cylinder Diesel Engines," Energies, MDPI, vol. 17(9), pages 1-15, April.
- Liu, Xingrang & Bansal, R.C., 2014. "Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant," Applied Energy, Elsevier, vol. 130(C), pages 658-669.
- François Delcourt & Abdelkader Izerroukyene & Damien Méresse & David Uystepruyst & François Beaubert & Céline Morin, 2024. "Experimental Study of Pollutant Emissions from Biomass Combustion and Modeling of PM Transportation," Energies, MDPI, vol. 17(11), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Chungen, 2015. "On gas and particle radiation in pulverized fuel combustion furnaces," Applied Energy, Elsevier, vol. 157(C), pages 554-561.
- Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
- Bartosz Ciupek & Andrzej Frąckowiak, 2024. "Review of Thermal Calculation Methods for Boilers—Perspectives on Thermal Optimization for Improving Ecological Parameters," Energies, MDPI, vol. 17(24), pages 1-15, December.
- Wu, X.D. & Xia, X.H. & Chen, G.Q. & Wu, X.F. & Chen, B., 2016. "Embodied energy analysis for coal-based power generation system-highlighting the role of indirect energy cost," Applied Energy, Elsevier, vol. 184(C), pages 936-950.
- Chang, Hsuan & Hsu, Jian-An & Chang, Cheng-Liang & Ho, Chii-Dong & Cheng, Tung-Wen, 2017. "Simulation study of transfer characteristics for spacer-filled membrane distillation desalination modules," Applied Energy, Elsevier, vol. 185(P2), pages 2045-2057.
- Nikula, Riku-Pekka & Ruusunen, Mika & Leiviskä, Kauko, 2016. "Data-driven framework for boiler performance monitoring," Applied Energy, Elsevier, vol. 183(C), pages 1374-1388.
- Gavirineni Naveen Kumar & Edison Gundabattini, 2022. "Investigation of Supercritical Power Plant Boiler Combustion Process Optimization through CFD and Genetic Algorithm Methods," Energies, MDPI, vol. 15(23), pages 1-28, November.
- Wang, Yuelan & Ma, Zengyi & Shen, Yueliang & Tang, Yijun & Ni, Mingjiang & Chi, Yong & Yan, Jianhua & Cen, Kefa, 2016. "A power-saving control strategy for reducing the total pressure applied by the primary air fan of a coal-fired power plant," Applied Energy, Elsevier, vol. 175(C), pages 380-388.
- Sang-Mok Lee & So-Won Choi & Eul-Bum Lee, 2023. "Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)," Energies, MDPI, vol. 16(19), pages 1-33, September.
- Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.
- Tang, Wei & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Shi, Junchao, 2021. "Constructal design for a boiler economizer," Energy, Elsevier, vol. 223(C).
- Qianchao Wang & Hongcan Xu & Lei Pan & Li Sun, 2020. "Active Disturbance Rejection Control of Boiler Forced Draft System: A Data-Driven Practice," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
- Mikulčić, Hrvoje & von Berg, Eberhard & Vujanović, Milan & Wang, Xuebin & Tan, Houzhang & Duić, Neven, 2016. "Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner," Applied Energy, Elsevier, vol. 184(C), pages 1292-1305.
- Adeniyi K. Onaolapo & Gulshan Sharma & Pitshou N. Bokoro & Anuoluwapo Aluko & Giovanni Pau, 2023. "A Distributed Control Scheme for Cyber-Physical DC Microgrid Systems," Energies, MDPI, vol. 16(15), pages 1-17, July.
More about this item
Keywords
carbon footprint; co-combustion; hydrogen; turbojet engine; emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5397-:d:1509805. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.