IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6230-d1226684.html
   My bibliography  Save this article

Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting

Author

Listed:
  • Yuanhang Qi

    (School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China
    School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Haoyu Luo

    (School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China
    School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Yuhui Luo

    (School of Automation, Guangdong University of Technology, Guangzhou 510006, China)

  • Rixu Liao

    (School of Accountancy, Guangdong Baiyun University, Guangzhou 510550, China)

  • Liwei Ye

    (School of Computer Science, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China)

Abstract

Short-term load forecasting (STLF) plays an important role in facilitating efficient and reliable operations of power systems and optimizing energy planning in the electricity market. To improve the accuracy of power load prediction, an adaptive clustering long short-term memory network is proposed to effectively combine the clustering process and prediction process. More specifically, the clustering process adopts the maximum deviation similarity criterion clustering algorithm (MDSC) as the clustering framework. A bee-foraging learning particle swarm optimization is further applied to realize the adaptive optimization of its hyperparameters. The prediction process consists of three parts: (i) a 9-dimensional load feature vector is proposed as the classification feature of SVM to obtain the load similarity cluster of the predicted days; (ii) the same kind of data are used as the training data of long short-term memory network; (iii) the trained network is used to predict the power load curve of the predicted day. Finally, experimental results are presented to show that the proposed scheme achieves an advantage in the prediction accuracy, where the mean absolute percentage error between predicted value and real value is only 8.05% for the first day.

Suggested Citation

  • Yuanhang Qi & Haoyu Luo & Yuhui Luo & Rixu Liao & Liwei Ye, 2023. "Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6230-:d:1226684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    2. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
    3. Erdogdu, Erkan, 2007. "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Elsevier, vol. 35(2), pages 1129-1146, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quota Alief Sias & Rahma Gantassi & Yonghoon Choi & Jeong Hwan Bae, 2024. "Recurrence Multilinear Regression Technique for Improving Accuracy of Energy Prediction in Power Systems," Energies, MDPI, vol. 17(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yanmei & Hasan, Najmul & Deng, Changrui & Bao, Yukun, 2022. "Multivariate empirical mode decomposition based hybrid model for day-ahead peak load forecasting," Energy, Elsevier, vol. 239(PC).
    2. Haoran Zhao & Sen Guo, 2021. "Uncertain Interval Forecasting for Combined Electricity-Heat-Cooling-Gas Loads in the Integrated Energy System Based on Multi-Task Learning and Multi-Kernel Extreme Learning Machine," Mathematics, MDPI, vol. 9(14), pages 1-32, July.
    3. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    4. Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
    5. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    6. Erdogdu, Erkan, 2007. "Nuclear power in open energy markets: A case study of Turkey," Energy Policy, Elsevier, vol. 35(5), pages 3061-3073, May.
    7. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    8. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    9. Omar Farhan Al-Hardanee & Hüseyin Demirel, 2024. "Hydropower Station Status Prediction Using RNN and LSTM Algorithms for Fault Detection," Energies, MDPI, vol. 17(22), pages 1-23, November.
    10. Halim TATLI, 2022. "Long-term price and income elasticity of residential natural gas demand in Turkey," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(1(630), S), pages 101-122, Spring.
    11. Paul Adjei Kwakwa & Solomon Aboagye, 2014. "Energy consumption in Ghana and the story of economic growth, industrialization, trade openness and urbanization," Asian Bulletin of Energy Economics and Technology, Asian Online Journal Publishing Group, vol. 1(1), pages 1-6.
    12. Coelho, Igor M. & Coelho, Vitor N. & Luz, Eduardo J. da S. & Ochi, Luiz S. & Guimarães, Frederico G. & Rios, Eyder, 2017. "A GPU deep learning metaheuristic based model for time series forecasting," Applied Energy, Elsevier, vol. 201(C), pages 412-418.
    13. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    14. Dilaver, Zafer & Hunt, Lester C., 2011. "Turkish aggregate electricity demand: An outlook to 2020," Energy, Elsevier, vol. 36(11), pages 6686-6696.
    15. Caterina De Lucia & Pasquale Pazienza & Mark Bartlett, 2020. "Does Good ESG Lead to Better Financial Performances by Firms? Machine Learning and Logistic Regression Models of Public Enterprises in Europe," Sustainability, MDPI, vol. 12(13), pages 1-29, July.
    16. Dong, Hanjiang & Zhu, Jizhong & Li, Shenglin & Wu, Wanli & Zhu, Haohao & Fan, Junwei, 2023. "Short-term residential household reactive power forecasting considering active power demand via deep Transformer sequence-to-sequence networks," Applied Energy, Elsevier, vol. 329(C).
    17. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    18. Chen, Qian & He, Peng & Yu, Chuanjin & Zhang, Xiaochi & He, Jiayong & Li, Yongle, 2023. "Multi-step short-term wind speed predictions employing multi-resolution feature fusion and frequency information mining," Renewable Energy, Elsevier, vol. 215(C).
    19. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    20. Cheng, Xianda & Zheng, Haoran & Dong, Wei & Yang, Xuesen, 2023. "Performance prediction of marine intercooled cycle gas turbine based on expanded similarity parameters," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6230-:d:1226684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.