IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i6p1433-d1358146.html
   My bibliography  Save this article

Combined K-Means Clustering with Neural Networks Methods for PV Short-Term Generation Load Forecasting in Electric Utilities

Author

Listed:
  • Alex Sleiman

    (DTE Electric, Detroit, MI 48226, USA
    Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

  • Wencong Su

    (Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA)

Abstract

The power system has undergone significant growth and faced considerable challenges in recent decades, marked by the surge in energy demand and advancements in smart grid technologies, including solar and wind energies, as well as the widespread adoption of electric vehicles. These developments have introduced a level of complexity for utilities, compounded by the rapid expansion of behind-the-meter (BTM) photovoltaic (PV) systems, each with its own unique design and characteristics, thereby impacting power grid stability and reliability. In response to these intricate challenges, this research focused on the development of a robust forecasting model for load generation. This precision forecasting is crucial for optimal planning, mitigating the adverse effects of PV systems, and reducing operational and maintenance costs. By addressing these key aspects, the goal is to enhance the overall resilience and efficiency of the power grid amidst the evolving landscape of energy and technological advancements. The authors propose a solution leveraging LSTM (long short-term memory) model for a forecasting horizon up to 168 hours. This approach incorporates combinations of K-means clustering, automated meter infrastructure (AMI) real-world PV load generation, weather data, and calculated solar positions to forecast the generation load at customer locations to achieve a 5.7% mean absolute error between the actual and the predicted generation load.

Suggested Citation

  • Alex Sleiman & Wencong Su, 2024. "Combined K-Means Clustering with Neural Networks Methods for PV Short-Term Generation Load Forecasting in Electric Utilities," Energies, MDPI, vol. 17(6), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1433-:d:1358146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/6/1433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/6/1433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Suryanarayana, Gowri & Lago, Jesus & Geysen, Davy & Aleksiejuk, Piotr & Johansson, Christian, 2018. "Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods," Energy, Elsevier, vol. 157(C), pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quota Alief Sias & Rahma Gantassi & Yonghoon Choi & Jeong Hwan Bae, 2024. "Recurrence Multilinear Regression Technique for Improving Accuracy of Energy Prediction in Power Systems," Energies, MDPI, vol. 17(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Y. Kondaiah & B. Saravanan, 2022. "Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method," Energies, MDPI, vol. 15(14), pages 1-17, July.
    2. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    3. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    4. Tania Cerquitelli & Giovanni Malnati & Daniele Apiletti, 2019. "Exploiting Scalable Machine-Learning Distributed Frameworks to Forecast Power Consumption of Buildings," Energies, MDPI, vol. 12(15), pages 1-18, July.
    5. Zhong, Wei & Huang, Wei & Lin, Xiaojie & Li, Zhongbo & Zhou, Yi, 2020. "Research on data-driven identification and prediction of heat response time of urban centralized heating system," Energy, Elsevier, vol. 212(C).
    6. Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
    7. Van Oevelen, Tijs & Vanhoudt, Dirk & Johansson, Christian & Smulders, Ed, 2020. "Testing and performance evaluation of the STORM controller in two demonstration sites," Energy, Elsevier, vol. 197(C).
    8. Chung, Won Hee & Gu, Yeong Hyeon & Yoo, Seong Joon, 2022. "District heater load forecasting based on machine learning and parallel CNN-LSTM attention," Energy, Elsevier, vol. 246(C).
    9. de Ridder, Fjo & van Roy, Jeroen & de Schutter, Bert & Mazairac, Wiet, 2021. "An exploration of shared heat storage systems in the greenhouse horticulture industry," Energy, Elsevier, vol. 235(C).
    10. Kristensen, Martin Heine & Hedegaard, Rasmus Elbæk & Petersen, Steffen, 2020. "Long-term forecasting of hourly district heating loads in urban areas using hierarchical archetype modeling," Energy, Elsevier, vol. 201(C).
    11. Vahid Arabzadeh & Peter D. Lund, 2020. "Effect of Heat Demand on Integration of Urban Large-Scale Renewable Schemes—Case of Helsinki City (60 °N)," Energies, MDPI, vol. 13(9), pages 1-17, May.
    12. Saletti, Costanza & Zimmerman, Nathan & Morini, Mirko & Kyprianidis, Konstantinos & Gambarotta, Agostino, 2021. "Enabling smart control by optimally managing the State of Charge of district heating networks," Applied Energy, Elsevier, vol. 283(C).
    13. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    14. Wang, Yongli & Wang, Huan & Meng, Xiao & Dong, Huanran & Chen, Xin & Xiang, Hao & Xing, Juntai, 2023. "Considering the dual endogenous-exogenous uncertainty integrated energy multiple load short-term forecast," Energy, Elsevier, vol. 285(C).
    15. Maciej Bujalski & Paweł Madejski, 2021. "Forecasting of Heat Production in Combined Heat and Power Plants Using Generalized Additive Models," Energies, MDPI, vol. 14(8), pages 1-15, April.
    16. Deb, C. & Schlueter, A., 2021. "Review of data-driven energy modelling techniques for building retrofit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Binglin Li & Yong Shao & Yufeng Lian & Pai Li & Qiang Lei, 2023. "Bayesian Optimization-Based LSTM for Short-Term Heating Load Forecasting," Energies, MDPI, vol. 16(17), pages 1-14, August.
    18. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    19. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Mengyao Lu & Guitao Xu & Jianjuan Yuan, 2023. "Installation Principle and Calculation Model of the Representative Indoor Temperature-Monitoring Points in Large-Scale Buildings," Energies, MDPI, vol. 16(17), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:6:p:1433-:d:1358146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.