IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4971-d1492375.html
   My bibliography  Save this article

Current-Sensorless Method for Photovoltaic System Using Capacitor Charging Characteristics

Author

Listed:
  • Song-Do Ki

    (Department of Electrical Engineering, Sunchon National University, Suncheon-si 57922, Republic of Korea)

  • Cheol-Woong Choi

    (Department of Electrical Engineering, Sunchon National University, Suncheon-si 57922, Republic of Korea)

  • Jae-Sub Ko

    (Department of Electrical Engineering, Gangneung-Wonju National University, Wonju-si 26403, Republic of Korea)

  • Dae-Kyong Kim

    (Department of Electrical Engineering, Sunchon National University, Suncheon-si 57922, Republic of Korea)

Abstract

The installed capacity of photovoltaic (PV) systems has increased significantly over the past few decades, and related technologies have advanced significantly. The electrical characteristics of a PV system change nonlinearly based on irradiation and temperature, and the I–V characteristic curve, expressed in terms of the voltage and current, is used to verify these characteristics. The maximum power point tracking (MPPT) control method was applied to maximize the performance of the PV system. Voltage and current sensors are used to control the I–V characteristic curve and MPPT; however, current sensors have various disadvantages in terms of price and system configuration. Therefore, this study presents a method for calculating the current of a PV system using the charging characteristics of a capacitor. The method presented in this paper analyzes the I–V characteristic curve’s qualities through simulations and experiments under normal, shaded, and mismatched conditions of the PV module.

Suggested Citation

  • Song-Do Ki & Cheol-Woong Choi & Jae-Sub Ko & Dae-Kyong Kim, 2024. "Current-Sensorless Method for Photovoltaic System Using Capacitor Charging Characteristics," Energies, MDPI, vol. 17(19), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4971-:d:1492375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    2. Ding, Kun & Chen, Xiang & Weng, Shuai & Liu, Yongjie & Zhang, Jingwei & Li, Yuanliang & Yang, Zenan, 2023. "Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance," Energy, Elsevier, vol. 262(PB).
    3. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    4. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    5. Hong, Ying-Yi & Pula, Rolando A., 2022. "Detection and classification of faults in photovoltaic arrays using a 3D convolutional neural network," Energy, Elsevier, vol. 246(C).
    6. Li, B. & Delpha, C. & Diallo, D. & Migan-Dubois, A., 2021. "Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    8. Wang, Mengyuan & Xu, Xiaoyuan & Yan, Zheng, 2023. "Online fault diagnosis of PV array considering label errors based on distributionally robust logistic regression," Renewable Energy, Elsevier, vol. 203(C), pages 68-80.
    9. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    10. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    11. Qamar Navid & Ahmed Hassan & Abbas Ahmad Fardoun & Rashad Ramzan & Abdulrahman Alraeesi, 2021. "Fault Diagnostic Methodologies for Utility-Scale Photovoltaic Power Plants: A State of the Art Review," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    12. Li, Baojie & Hansen, Clifford W. & Chen, Xin & Diallo, Demba & Migan-Dubois, Anne & Delpha, Claude & Jain, Anubhav, 2024. "A robust I–V curve correction procedure for degraded photovoltaic modules," Renewable Energy, Elsevier, vol. 224(C).
    13. Jia, Ke & Gu, Chenjie & Li, Lun & Xuan, Zhengwen & Bi, Tianshu & Thomas, David, 2018. "Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants," Applied Energy, Elsevier, vol. 211(C), pages 568-581.
    14. Weiguo He & Deyang Yin & Kaifeng Zhang & Xiangwen Zhang & Jianyong Zheng, 2021. "Fault Detection and Diagnosis Method of Distributed Photovoltaic Array Based on Fine-Tuning Naive Bayesian Model," Energies, MDPI, vol. 14(14), pages 1-17, July.
    15. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    16. Li, Chenxi & Yang, Yongheng & Spataru, Sergiu & Zhang, Kanjian & Wei, Haikun, 2021. "A robust parametrization method of photovoltaic modules for enhancing one-diode model accuracy under varying operating conditions," Renewable Energy, Elsevier, vol. 168(C), pages 764-778.
    17. Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
    18. Mellit, Adel & Kalogirou, Soteris, 2022. "Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems," Renewable Energy, Elsevier, vol. 184(C), pages 1074-1090.
    19. Ahmed A. Al-Katheri & Essam A. Al-Ammar & Majed A. Alotaibi & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi, 2022. "Application of Artificial Intelligence in PV Fault Detection," Sustainability, MDPI, vol. 14(21), pages 1-25, October.
    20. Kuei-Hsiang Chao & Pei-Lun Lai, 2021. "A Fault Diagnosis Mechanism with Power Generation Improvement for a Photovoltaic Module Array," Energies, MDPI, vol. 14(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4971-:d:1492375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.