IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4950-d1491595.html
   My bibliography  Save this article

Control System for the Performance Analysis of Turbines at Laboratory Scale

Author

Listed:
  • Felipe Obando Vega

    (Grupo de Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Ainhoa Rubio-Clemente

    (Grupo de Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
    Escuela Ambiental, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia)

  • Edwin Chica

    (Grupo de Energía Alternativa, Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia)

Abstract

The generation of sustainable energy through wind and hydrokinetic turbines, which convert the kinetic energy from fluid flows into mechanical energy, presents an attractive solution for diversifying the country energy matrix in response to climate change. Consequently, numerous studies have investigated the aerodynamic and hydrodynamic behaviors of various wind and hydrokinetic turbines using numerical simulations to understand their interaction with the surrounding fluid flows and enhance their performance. However, to validate these studies and aiming at improving the turbine design, experimental studies on a laboratory scale employing wind tunnels and hydraulic channels are essential. This work addresses the development and implementation of a reliable control system for experimentally evaluating the power coefficient (C p ) versus the tip speed ratio (TSR) curve of wind and hydrokinetic turbines. The control system, based on a DC motor acting as a generator and aligned with a commercial torque sensor, enables a precise control over the experimental setup. By obtaining and comparing the experimental performance curves of C p versus TSR for both wind and hydrokinetic turbines with numerical results, the effectiveness and accuracy of the developed control system are demonstrated. A satisfactory fit between numerical and experimental results was achieved, underscoring the utility and reliability of the control system for assessing the turbine performance.

Suggested Citation

  • Felipe Obando Vega & Ainhoa Rubio-Clemente & Edwin Chica, 2024. "Control System for the Performance Analysis of Turbines at Laboratory Scale," Energies, MDPI, vol. 17(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4950-:d:1491595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roy, Sukanta & Saha, Ujjwal K., 2015. "Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine," Applied Energy, Elsevier, vol. 137(C), pages 117-125.
    2. Yavuz, T. & Koç, E. & Kılkış, B. & Erol, Ö. & Balas, C. & Aydemir, T., 2015. "Performance analysis of the airfoil-slat arrangements for hydro and wind turbine applications," Renewable Energy, Elsevier, vol. 74(C), pages 414-421.
    3. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reddy, K. Bheemalingeswara & Bhosale, Amit C., 2024. "Effect of number of blades on performance and wake recovery for a vertical axis helical hydrokinetic turbine," Energy, Elsevier, vol. 299(C).
    2. Serdar GENÇ, Mustafa & KOCA, Kemal & AÇIKEL, Halil Hakan, 2019. "Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element," Energy, Elsevier, vol. 176(C), pages 320-334.
    3. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    4. Tristan Revaz & Mou Lin & Fernando Porté-Agel, 2020. "Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01," Energies, MDPI, vol. 13(21), pages 1-18, October.
    5. Taimoor Asim & Dharminder Singh & M. Salman Siddiqui & Don McGlinchey, 2022. "Effect of Stator Blades on the Startup Dynamics of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 15(21), pages 1-19, October.
    6. Jan Michna & Krzysztof Rogowski, 2022. "CFD Calculations of Average Flow Parameters around the Rotor of a Savonius Wind Turbine," Energies, MDPI, vol. 16(1), pages 1-17, December.
    7. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    8. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    9. Zaki, Abanoub & Abdelrahman, M.A. & Ayad, Samir S. & Abdellatif, O.E., 2022. "Effects of leading edge slat on the aerodynamic performance of low Reynolds number horizontal axis wind turbine," Energy, Elsevier, vol. 239(PD).
    10. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2022. "Robust optimization of Savonius-type wind turbine deflector blades considering wind direction sensitivity and production material decrease," Renewable Energy, Elsevier, vol. 192(C), pages 150-163.
    11. Guillem Armengol Barcos & Fernando Porté-Agel, 2023. "Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments," Energies, MDPI, vol. 17(1), pages 1-20, December.
    12. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2022. "Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model," Energy, Elsevier, vol. 241(C).
    13. Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
    14. Aju, Emmanuvel Joseph & Kumar, Devesh & Leffingwell, Melissa & Rotea, Mario A. & Jin, Yaqing, 2023. "The influence of yaw misalignment on turbine power output fluctuations and unsteady aerodynamic loads within wind farms," Renewable Energy, Elsevier, vol. 215(C).
    15. Kai Lv & Yudong Xie & Xinbiao Zhang & Yong Wang, 2020. "Development of Savonius Rotors Integrated into Control Valves for Energy Harvesting," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    16. Grönman, Aki & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2019. "Experimental and analytical analysis of vaned savonius turbine performance under different operating conditions," Applied Energy, Elsevier, vol. 250(C), pages 864-872.
    17. Alom, Nur & Saha, Ujjwal K., 2018. "Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments," Energy, Elsevier, vol. 152(C), pages 277-290.
    18. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    19. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    20. Shayan Farajyar & Farzad Ghafoorian & Mehdi Mehrpooya & Mohammadreza Asadbeigi, 2023. "CFD Investigation and Optimization on the Aerodynamic Performance of a Savonius Vertical Axis Wind Turbine and Its Installation in a Hybrid Power Supply System: A Case Study in Iran," Sustainability, MDPI, vol. 15(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4950-:d:1491595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.