IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i19p4847-d1487074.html
   My bibliography  Save this article

Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines

Author

Listed:
  • Luca Cacciali

    (DTU Wind and Energy Systems, Fredensborgvej 399, 4000 Roskilde, Denmark)

  • Martin O. L. Hansen

    (DTU Wind and Energy Systems, Fredensborgvej 399, 4000 Roskilde, Denmark)

  • Krzysztof Rogowski

    (Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, 00-665 Warsaw, Poland)

Abstract

A 2-D Lattice Boltzmann Method, designed to ensure stability at high Reynolds numbers, is combined with an Actuator Line Model to compute the loads on a two-bladed vertical axis wind turbine. Tests on the kernel size at a high mesh resolution reveal that a size equal to half of the full chord length yields the most accurate results. The aerodynamic load solution is validated against a fully resolved Scale-Adaptive Simulation (SAS) output, demonstrating high correlation, and enabling an assessment of near wake and downstream effects. The model’s adaptability to various rotor operating conditions is confirmed through tests at high and low tip-speed ratios. Additionally, a Biot–Savart-based Vortex Model (VM) is employed for further comparison, showing good agreement with the Lattice Boltzmann output. The results indicate that the Highly Stable Lattice Boltzmann Method integrated with the Actuator Line Model enhances the accuracy of flow field resolution and effectively captures complex aerodynamic phenomena, making it a valuable tool for simulating vertical axis wind turbines.

Suggested Citation

  • Luca Cacciali & Martin O. L. Hansen & Krzysztof Rogowski, 2024. "Highly Stable Lattice Boltzmann Method with a 2-D Actuator Line Model for Vertical Axis Wind Turbines," Energies, MDPI, vol. 17(19), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4847-:d:1487074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/19/4847/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/19/4847/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Rogowski, 2019. "CFD Computation of the H-Darrieus Wind Turbine—The Impact of the Rotating Shaft on the Rotor Performance," Energies, MDPI, vol. 12(13), pages 1-17, June.
    2. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment," Renewable Energy, Elsevier, vol. 107(C), pages 373-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haider, Rizwan & Shi, Wei & Cai, Yefeng & Lin, Zaibin & Li, Xin & Hu, Zhiqiang, 2024. "A comprehensive numerical model for aero-hydro-mooring analysis of a floating offshore wind turbine," Renewable Energy, Elsevier, vol. 237(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bangga, Galih & Dessoky, Amgad & Wu, Zhenlong & Rogowski, Krzysztof & Hansen, Martin O.L., 2020. "Accuracy and consistency of CFD and engineering models for simulating vertical axis wind turbine loads," Energy, Elsevier, vol. 206(C).
    2. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    3. Lakshmi Srinivasan & Nishanth Ram & Sudharshan Bharatwaj Rengarajan & Unnikrishnan Divakaran & Akram Mohammad & Ratna Kishore Velamati, 2023. "Effect of Macroscopic Turbulent Gust on the Aerodynamic Performance of Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(5), pages 1-24, February.
    4. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    5. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    6. Celik, Yunus & Ingham, Derek & Ma, Lin & Pourkashanian, Mohamed, 2022. "Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped aerofoils considering various design parameters using CFD," Energy, Elsevier, vol. 251(C).
    7. Zanforlin, Stefania & Deluca, Stefano, 2018. "Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed Vertical Axis Wind Turbines," Energy, Elsevier, vol. 148(C), pages 179-195.
    8. Silva, Paulo A.S.F. & Tsoutsanis, Panagiotis & Vaz, Jerson R.P. & Macias, Marianela M., 2024. "A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver," Energy, Elsevier, vol. 294(C).
    9. Gonçalves, Afonso N.C. & Pereira, José M.C. & Sousa, João M.M., 2022. "Passive control of dynamic stall in a H-Darrieus Vertical Axis Wind Turbine using blade leading-edge protuberances," Applied Energy, Elsevier, vol. 324(C).
    10. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    11. Elkhoury, M. & Kiwata, T. & Nagao, K. & Kono, T. & ElHajj, F., 2018. "Wind tunnel experiments and Delayed Detached Eddy Simulation of a three-bladed micro vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 63-74.
    12. Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
    13. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "Active flow control for power enhancement of vertical axis wind turbines: Leading-edge slot suction," Energy, Elsevier, vol. 189(C).
    14. Lidong Zhang & Kaiqi Zhu & Junwei Zhong & Ling Zhang & Tieliu Jiang & Shaohua Li & Zhongbin Zhang, 2018. "Numerical Investigations of the Effects of the Rotating Shaft and Optimization of Urban Vertical Axis Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-25, July.
    15. Ruiwen Zhao & Angus C. W. Creech & Alistair G. L. Borthwick & Vengatesan Venugopal & Takafumi Nishino, 2020. "Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model," Energies, MDPI, vol. 13(4), pages 1-26, February.
    16. Huang, Huilan & Luo, Jiabin & Li, Gang, 2023. "Study on the optimal design of vertical axis wind turbine with novel variable solidity type for self-starting capability and aerodynamic performance," Energy, Elsevier, vol. 271(C).
    17. Cinzia Rainone & Danilo De Siero & Luigi Iuspa & Antonio Viviani & Giuseppe Pezzella, 2023. "A Numerical Procedure for Variable-Pitch Law Formulation of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(1), pages 1-20, January.
    18. Peng, H.Y. & Liu, M.N. & Liu, H.J. & Lin, K., 2022. "Optimization of twin vertical axis wind turbines through large eddy simulations and Taguchi method," Energy, Elsevier, vol. 240(C).
    19. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    20. Andrés Chalaca & Laura Velásquez & Ainhoa Rubio-Clemente & Edwin Chica, 2024. "Design and Optimization of a Gorlov-Type Hydrokinetic Turbine Array for Energy Generation Using Response Surface Methodology," Energies, MDPI, vol. 17(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:19:p:4847-:d:1487074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.