IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4296-d1465752.html
   My bibliography  Save this article

Predicting Industrial Electricity Consumption Using Industry–Geography Relationships: A Graph-Based Machine Learning Approach

Author

Listed:
  • Xiangpeng Zhan

    (State Grid Fujian Marketing Service Center (Metering Center), Fuzhou 350013, China)

  • Xiaorui Qian

    (State Grid Fujian Marketing Service Center (Metering Center), Fuzhou 350013, China)

  • Wei Liu

    (School of Mathematical Sciences, Xiamen University, Xiamen 361005, China)

  • Xinru Liu

    (School of Mathematical Sciences, Xiamen University, Xiamen 361005, China)

  • Yuying Chen

    (State Grid Fujian Marketing Service Center (Metering Center), Fuzhou 350013, China)

  • Liang Zhang

    (School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
    School of Mathematics, Shandong University, Jinan 250000, China)

  • Huawei Hong

    (State Grid Fujian Marketing Service Center (Metering Center), Fuzhou 350013, China)

  • Yimin Shen

    (State Grid Fujian Marketing Service Center (Metering Center), Fuzhou 350013, China)

  • Kai Xiao

    (State Grid Fujian Marketing Service Center (Metering Center), Fuzhou 350013, China)

Abstract

Accurately predicting industrial electricity consumption is of paramount importance for optimizing energy management and operational efficiency. Traditional forecasting approaches face significant challenges in capturing the complex factors influencing industrial electricity consumption, often due to the inadequate representation of correlations, thus limiting their predictive capabilities. To overcome these limitations, we propose a novel graph-based forecasting model termed Industry–Geography Time Series Forecasting Model (IG-TFM). Our approach leverages historical electricity consumption data and geographical information relevant to similar industries to construct an industry–geography relationship graph. This graph serves as the foundation of a comprehensive network that encompasses all industries of interest, allowing us to identify sectors closely associated with the target industry. The structured graph data are then processed within a graph convolutional neural network framework, which effectively captures the impact of geographical location, industry similarities, and inter-industry relationships on electricity consumption patterns. Utilizing this enriched representation, we develop our IG-TFM for accurate time series forecasting of industrial electricity consumption. Experiments conducted on real-world data, including 31 industries across 9 cities in a southern province of China, demonstrate the significant advantages of our proposed method across key performance indicators such as the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). These findings underscore the importance and efficacy of employing complex networks to encode sequence-related information, thereby substantially improving prediction accuracy in industrial electricity consumption forecasting.

Suggested Citation

  • Xiangpeng Zhan & Xiaorui Qian & Wei Liu & Xinru Liu & Yuying Chen & Liang Zhang & Huawei Hong & Yimin Shen & Kai Xiao, 2024. "Predicting Industrial Electricity Consumption Using Industry–Geography Relationships: A Graph-Based Machine Learning Approach," Energies, MDPI, vol. 17(17), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4296-:d:1465752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    2. Zhou, Yang & Zhang, Shuaishuai & Wu, Libo & Tian, Yingjie, 2019. "Predicting sectoral electricity consumption based on complex network analysis," Applied Energy, Elsevier, vol. 255(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
    3. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    4. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    5. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    6. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    7. Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
    8. Anna Almosova & Niek Andresen, 2023. "Nonlinear inflation forecasting with recurrent neural networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 240-259, March.
    9. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    10. Frison, Lilli & Gölzhäuser, Simon & Bitterling, Moritz & Kramer, Wolfgang, 2024. "Evaluating different artificial neural network forecasting approaches for optimizing district heating network operation," Energy, Elsevier, vol. 307(C).
    11. Zhang, Shuaishuai & Wu, Libo & Zhou, Yang, 2020. "The impact of negative list policy on sectoral structure: Based on complex network and DID analysis," Applied Energy, Elsevier, vol. 278(C).
    12. Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
    13. Kandaswamy Paramasivan & Brinda Subramani & Nandan Sudarsanam, 2022. "Counterfactual analysis of the impact of the first two waves of the COVID-19 pandemic on the reporting and registration of missing people in India," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    14. Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
    15. Sergio Consoli & Luca Tiozzo Pezzoli & Elisa Tosetti, 2022. "Neural forecasting of the Italian sovereign bond market with economic news," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 197-224, December.
    16. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    17. Pengfei Zhao & Haoren Zhu & Wilfred Siu Hung NG & Dik Lun Lee, 2024. "From GARCH to Neural Network for Volatility Forecast," Papers 2402.06642, arXiv.org.
    18. Li, Xixi & Yuan, Jingsong, 2024. "DeepTVAR: Deep learning for a time-varying VAR model with extension to integrated VAR," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1123-1133.
    19. Zhen Zeng & Rachneet Kaur & Suchetha Siddagangappa & Saba Rahimi & Tucker Balch & Manuela Veloso, 2023. "Financial Time Series Forecasting using CNN and Transformer," Papers 2304.04912, arXiv.org.
    20. Chaokai Huang & Ning Du & Jiahan He & Na Li & Yifan Feng & Weihong Cai, 2023. "Multidimensional Feature-Based Graph Attention Networks and Dynamic Learning for Electricity Load Forecasting," Energies, MDPI, vol. 16(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4296-:d:1465752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.