IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4234-d1463204.html
   My bibliography  Save this article

Short-Term Forecasts of Energy Generation in a Solar Power Plant Using Various Machine Learning Models, along with Ensemble and Hybrid Methods

Author

Listed:
  • Paweł Piotrowski

    (Electrical Power Engineering Institute, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland)

  • Marcin Kopyt

    (Electrical Power Engineering Institute, Warsaw University of Technology, Koszykowa 75 Street, 00-662 Warsaw, Poland)

Abstract

High-quality short-term forecasts of electrical energy generation in solar power plants are crucial in the dynamically developing sector of renewable power generation. This article addresses the issue of selecting appropriate (preferred) methods for forecasting energy generation from a solar power plant within a 15 min time horizon. The effectiveness of various machine learning methods was verified. Additionally, the effectiveness of proprietary ensemble and hybrid methods was proposed and examined. The research also aimed to determine the appropriate sets of input variables for the predictive models. To enhance the performance of the predictive models, proprietary additional input variables (feature engineering) were constructed. The significance of individual input variables was examined depending on the predictive model used. This article concludes with findings and recommendations regarding the preferred predictive methods.

Suggested Citation

  • Paweł Piotrowski & Marcin Kopyt, 2024. "Short-Term Forecasts of Energy Generation in a Solar Power Plant Using Various Machine Learning Models, along with Ensemble and Hybrid Methods," Energies, MDPI, vol. 17(17), pages 1-24, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4234-:d:1463204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    2. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
    3. Wang, Hu & Mao, Lei & Zhang, Heng & Wu, Qiang, 2024. "Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method," Applied Energy, Elsevier, vol. 353(PB).
    4. Wang, Fei & Lu, Xiaoxing & Mei, Shengwei & Su, Ying & Zhen, Zhao & Zou, Zubing & Zhang, Xuemin & Yin, Rui & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant," Energy, Elsevier, vol. 238(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    2. Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
    3. Franko Pandžić & Tomislav Capuder, 2023. "Advances in Short-Term Solar Forecasting: A Review and Benchmark of Machine Learning Methods and Relevant Data Sources," Energies, MDPI, vol. 17(1), pages 1-19, December.
    4. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    5. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    6. Pei, Jingyin & Dong, Yunxuan & Guo, Pinghui & Wu, Thomas & Hu, Jianming, 2024. "A Hybrid Dual Stream ProbSparse Self-Attention Network for spatial–temporal photovoltaic power forecasting," Energy, Elsevier, vol. 305(C).
    7. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    8. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
    9. Roldán-Blay, Carlos & Abad-Rodríguez, Manuel Francisco & Abad-Giner, Víctor & Serrano-Guerrero, Xavier, 2024. "Interval-based solar photovoltaic energy predictions: A single-parameter approach with direct radiation focus," Renewable Energy, Elsevier, vol. 230(C).
    10. Lai, Wenzhe & Zhen, Zhao & Wang, Fei & Fu, Wenjie & Wang, Junlong & Zhang, Xudong & Ren, Hui, 2024. "Sub-region division based short-term regional distributed PV power forecasting method considering spatio-temporal correlations," Energy, Elsevier, vol. 288(C).
    11. Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    13. Hong Wu & Haipeng Liu & Huaiping Jin & Yanping He, 2024. "Ultra-Short-Term Photovoltaic Power Prediction by NRGA-BiLSTM Considering Seasonality and Periodicity of Data," Energies, MDPI, vol. 17(18), pages 1-19, September.
    14. Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).
    15. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    16. Zhou, Hai & Yang, Fan & Wu, Ji & Hu, Siyu & Ma, Wenwen & Ju, Rongrong, 2024. "Comprehensive evaluation methods for photovoltaic output anomalies based on weather classification," Renewable Energy, Elsevier, vol. 231(C).
    17. Alessandro Niccolai & Emanuele Ogliari & Alfredo Nespoli & Riccardo Zich & Valentina Vanetti, 2022. "Very Short-Term Forecast: Different Classification Methods of the Whole Sky Camera Images for Sudden PV Power Variations Detection," Energies, MDPI, vol. 15(24), pages 1-16, December.
    18. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
    19. Xing, Zhikai & He, Yigang, 2023. "Multi-modal multi-step wind power forecasting based on stacking deep learning model," Renewable Energy, Elsevier, vol. 215(C).
    20. Liu, Zhi-Feng & Liu, You-Yuan & Chen, Xiao-Rui & Zhang, Shu-Rui & Luo, Xing-Fu & Li, Ling-Ling & Yang, Yi-Zhou & You, Guo-Dong, 2024. "A novel deep learning-based evolutionary model with potential attention and memory decay-enhancement strategy for short-term wind power point-interval forecasting," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4234-:d:1463204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.