IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4127-d1459301.html
   My bibliography  Save this article

Experimental Investigation of R404A Indirect Refrigeration System Applied Internal Heat Exchanger: Part 1—Coefficient of Performance Characteristics

Author

Listed:
  • Min-Ju Jeon

    (Department of Refrigeration and Air-Conditioning Engineering, College of Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea)

  • Joon-Hyuk Lee

    (Department of Refrigeration and Air-Conditioning Engineering, College of Engineering, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea)

Abstract

In this study, the performance characteristics of an R404A indirect refrigeration system (IRS) applied to an internal heat exchanger (IHX) is evaluated for supermarkets and hypermarkets. In a direct expansion system, R404A is the primary refrigerant and R744, a brine, is the secondary fluid. While there are abundant studies analyzing the theoretical performance of IRS, experimental research on IRS is lacking, and there are no papers that address the results of changes in the IHX in detail. In this study, the results achieved by modifying various parameters are experimentally evaluated to provide fundamental data for designing the optimal IRS. In the main results, looking at the trend of the increase in IHX efficiency, the change is very minimal when the efficiency is above 50%, so it is ideal to apply an IHX efficiency of about 50% considering economics and COP, etc. Applying the results in this study enables the operation and maintenance of IRSs as an eco-friendly system by achieving energy efficiency through optimizing the system coefficient of performance and securing economic feasibility by minimizing the R404A charging amount of the refrigeration cycle. To serve supermarkets and hypermarkets, R744 as a secondary fluid may help to realize an ecologically friendly, compact IRS system with a high heat transfer coefficient that can operate at low temperatures (−35 to 5 °C).

Suggested Citation

  • Min-Ju Jeon & Joon-Hyuk Lee, 2024. "Experimental Investigation of R404A Indirect Refrigeration System Applied Internal Heat Exchanger: Part 1—Coefficient of Performance Characteristics," Energies, MDPI, vol. 17(16), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4127-:d:1459301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. She, Xiaohui & Cong, Lin & Nie, Binjian & Leng, Guanghui & Peng, Hao & Chen, Yi & Zhang, Xiaosong & Wen, Tao & Yang, Hongxing & Luo, Yimo, 2018. "Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review," Applied Energy, Elsevier, vol. 232(C), pages 157-186.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    2. Ciro Aprea & Laura Canale & Marco Dell’Isola & Giorgio Ficco & Andrea Frattolillo & Angelo Maiorino & Fabio Petruzziello, 2023. "On the Use of Ultrasonic Flowmeters for Cooling Energy Metering and Sub-Metering in Direct Expansion Systems," Energies, MDPI, vol. 16(12), pages 1-16, June.
    3. Nie, Xianhua & Du, Zhenyu & Zhao, Li & Deng, Shuai & Zhang, Yue, 2019. "Molecular dynamics study on transport properties of supercritical working fluids: Literature review and case study," Applied Energy, Elsevier, vol. 250(C), pages 63-80.
    4. Haitao Wang & Jianfeng Zhai, 2023. "Simulation Analysis of High Radiant Heat Plant Cooling and Endothermic Screen Waste Heat Recovery Performance Based on FLUENT," Energies, MDPI, vol. 16(10), pages 1-16, May.
    5. Wen, Tao & Lu, Lin, 2019. "A review of correlations and enhancement approaches for heat and mass transfer in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 239(C), pages 757-784.
    6. Jianke Hu & Kai Teng & Yida Qiu & Yuzhu Chen & Jun Wang & Peter Lund, 2022. "Thermodynamic and Economic Performance Assessment of Double-Effect Absorption Chiller Systems with Series and Parallel Connections," Energies, MDPI, vol. 15(23), pages 1-17, December.
    7. Maiorino, Angelo & Petruzziello, Fabio & Grilletto, Arcangelo & Aprea, Ciro, 2024. "Kinetic energy harvesting for enhancing sustainability of refrigerated transportation," Applied Energy, Elsevier, vol. 364(C).
    8. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Wen, Tao & Lu, Lin & He, Weifeng & Min, Yunran, 2020. "Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review," Applied Energy, Elsevier, vol. 261(C).
    10. Liu, Jiarui & Yu, Jianlin & Yan, Gang, 2024. "Experimental study on performance characteristics of a −70 °C ultra-low temperature medical freezer with mixed hydrocarbon refrigerant," Energy, Elsevier, vol. 307(C).
    11. Lin Chen & Yizhi Zhang & Karim Ragui & Chaofeng Hou & Jinguang Zang & Yanping Huang, 2023. "Molecular Dynamics Method for Supercritical CO 2 Heat Transfer: A Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    12. Wu, Dongxu & Cui, Qi & Gao, Yuanzhi & Dai, Zhaofeng & Chen, Bo & Wang, Changling & Zhang, Xiaosong, 2022. "Study on the performance of solar interfacial evaporation for high-efficiency liquid desiccant regeneration," Energy, Elsevier, vol. 257(C).
    13. Zeng, Min-Qiang & Zheng, Qiu-Yun & Zhang, Xue-Lai & Mo, Fan-Yang & Zhang, Xin-Rong, 2022. "Thermodynamic analysis of a novel multi-target temperature transcritical CO2 ejector-expansion refrigeration cycle with vapor-injection," Energy, Elsevier, vol. 259(C).
    14. Yang, Jinwen & Han, Jitian & Duan, Lian & Zhu, Wanchao & Liang, Wenxing & Mou, Chaoyang, 2024. "Investigation on a novel hybrid system based on radiative sky cooling and split thermoelectric cooler driven by photovoltaic cell," Renewable Energy, Elsevier, vol. 229(C).
    15. Ahmed S. Alsaman & Ahmed A. Hassan & Ehab S. Ali & Ramy H. Mohammed & Alaa E. Zohir & Ayman M. Farid & Ayman M. Zakaria Eraqi & Hamdy H. El-Ghetany & Ahmed A. Askalany, 2022. "Hybrid Solar-Driven Desalination/Cooling Systems: Current Situation and Future Trend," Energies, MDPI, vol. 15(21), pages 1-25, October.
    16. Sajid Mehmood & Serguey A. Maximov & Hannah Chalmers & Daniel Friedrich, 2020. "Energetic, Economic and Environmental (3E) Assessment and Design of Solar-Powered HVAC Systems in Pakistan," Energies, MDPI, vol. 13(17), pages 1-25, August.
    17. Angelo Maiorino & Fabio Petruzziello & Ciro Aprea, 2021. "Refrigerated Transport: State of the Art, Technical Issues, Innovations and Challenges for Sustainability," Energies, MDPI, vol. 14(21), pages 1-55, November.
    18. Angelo Maiorino & Adrián Mota-Babiloni & Manuel Gesù Del Duca & Ciro Aprea, 2021. "Scheduling Optimization of a Cabinet Refrigerator Incorporating a Phase Change Material to Reduce Its Indirect Environmental Impact," Energies, MDPI, vol. 14(8), pages 1-17, April.
    19. Alaa Attar & Mohamed Rady & Abdullah Abuhabaya & Faisal Albatati & Abdelkarim Hegab & Eydhah Almatrafi, 2021. "Performance Assessment of Using Thermoelectric Generators for Waste Heat Recovery from Vapor Compression Refrigeration Systems," Energies, MDPI, vol. 14(23), pages 1-17, December.
    20. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4127-:d:1459301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.