IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4096-d1458482.html
   My bibliography  Save this article

A Flexible Envelope Method for the Operation Domain of Distribution Networks Based on “Degree of Squareness” Adjustable Superellipsoid

Author

Listed:
  • Kewei Wang

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Yonghong Huang

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Junjun Xu

    (School of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)

  • Yanbo Liu

    (School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

The operation envelope of distribution networks can obtain the independent p - q controllable range of each active node, providing an effective means to address the issues of different ownership and control objectives between distribution networks and distributed energy resources (DERs). Existing research mainly focuses on deterministic operation envelopes, neglecting the operational status of the system. To ensure the maximization of the envelope operation domain and the feasibility of decomposition, this paper proposes a modified hyperellipsoidal dynamic operation envelopes (MHDOEs) method for distribution networks based on adjustable “Degree of Squareness” hyperellipsoids. Firstly, an improved convex inner approximation method is applied to the non-convex and nonlinear model of traditional distribution networks to obtain a convex solution space strictly contained within the original feasible region of the system, ensuring the feasibility of flexible operation domain decomposition. Secondly, the embedding of the adjustable “Degree of Squareness” maximum hyperellipsoid is used to obtain the total p - q operation domain of the distribution network, facilitating the overall planning of the distribution network. Furthermore, the calculation of the maximum inscribed hyperrectangle of the hyperellipsoid is performed to achieve p - q decoupled operation among the active nodes of the distribution network. Subsequently, a correction coefficient is introduced to penalize “unknown states” during the operation domain calculation process, effectively enhancing the adaptability of the proposed method to complex stochastic scenarios. Finally, Monte Carlo methods are employed to construct various stochastic scenarios for the IEEE 33-node and IEEE 69-node systems, verifying the accuracy and decomposition feasibility of the obtained p - q operation domains.

Suggested Citation

  • Kewei Wang & Yonghong Huang & Junjun Xu & Yanbo Liu, 2024. "A Flexible Envelope Method for the Operation Domain of Distribution Networks Based on “Degree of Squareness” Adjustable Superellipsoid," Energies, MDPI, vol. 17(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4096-:d:1458482
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kou, Peng & Liang, Deliang & Wang, Chen & Wu, Zihao & Gao, Lin, 2020. "Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks," Applied Energy, Elsevier, vol. 264(C).
    2. Cailian Gu & Yibo Wang & Weisheng Wang & Yang Gao, 2023. "Research on Load State Sensing and Early Warning Method of Distribution Network under High Penetration Distributed Generation Access," Energies, MDPI, vol. 16(7), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
    2. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    3. He, Wangli & Li, Chengyuan & Cai, Chenhao & Qing, Xiangyun & Du, Wenli, 2024. "Suppressing active power fluctuations at PCC in grid-connection microgrids via multiple BESSs: A collaborative multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 373(C).
    4. Jude Suchithra & Amin Rajabi & Duane A. Robinson, 2024. "Enhancing PV Hosting Capacity of Electricity Distribution Networks Using Deep Reinforcement Learning-Based Coordinated Voltage Control," Energies, MDPI, vol. 17(20), pages 1-27, October.
    5. Yin, Linfei & Lu, Yuejiang, 2021. "Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources," Energy, Elsevier, vol. 226(C).
    6. Zhu, Dafeng & Yang, Bo & Liu, Yuxiang & Wang, Zhaojian & Ma, Kai & Guan, Xinping, 2022. "Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park," Applied Energy, Elsevier, vol. 311(C).
    7. Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).
    8. Se-Heon Lim & Sung-Guk Yoon, 2022. "Dynamic DNR and Solar PV Smart Inverter Control Scheme Using Heterogeneous Multi-Agent Deep Reinforcement Learning," Energies, MDPI, vol. 15(23), pages 1-18, December.
    9. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    10. Zhang, Zhengfa & da Silva, Filipe Faria & Guo, Yifei & Bak, Claus Leth & Chen, Zhe, 2021. "Double-layer stochastic model predictive voltage control in active distribution networks with high penetration of renewables," Applied Energy, Elsevier, vol. 302(C).
    11. Chen, Yongdong & Liu, Youbo & Zhao, Junbo & Qiu, Gao & Yin, Hang & Li, Zhengbo, 2023. "Physical-assisted multi-agent graph reinforcement learning enabled fast voltage regulation for PV-rich active distribution network," Applied Energy, Elsevier, vol. 351(C).
    12. Shen, Rendong & Zhong, Shengyuan & Wen, Xin & An, Qingsong & Zheng, Ruifan & Li, Yang & Zhao, Jun, 2022. "Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy," Applied Energy, Elsevier, vol. 312(C).
    13. Qingyan Li & Tao Lin & Qianyi Yu & Hui Du & Jun Li & Xiyue Fu, 2023. "Review of Deep Reinforcement Learning and Its Application in Modern Renewable Power System Control," Energies, MDPI, vol. 16(10), pages 1-23, May.
    14. Gong, Xun & Wang, Xiaozhe & Cao, Bo, 2023. "On data-driven modeling and control in modern power grids stability: Survey and perspective," Applied Energy, Elsevier, vol. 350(C).
    15. Du, Yan & Zandi, Helia & Kotevska, Olivera & Kurte, Kuldeep & Munk, Jeffery & Amasyali, Kadir & Mckee, Evan & Li, Fangxing, 2021. "Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning," Applied Energy, Elsevier, vol. 281(C).
    16. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2023. "Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey," Energies, MDPI, vol. 16(4), pages 1-38, February.
    17. Prabawa, Panggah & Choi, Dae-Hyun, 2024. "Safe deep reinforcement learning-assisted two-stage energy management for active power distribution networks with hydrogen fueling stations," Applied Energy, Elsevier, vol. 375(C).
    18. Xue, Lin & Zhang, Yao & Wang, Jianxue & Li, Haotian & Li, Fangshi, 2024. "Privacy-preserving multi-level co-regulation of VPPs via hierarchical safe deep reinforcement learning," Applied Energy, Elsevier, vol. 371(C).
    19. Lu, Renzhi & Li, Yi-Chang & Li, Yuting & Jiang, Junhui & Ding, Yuemin, 2020. "Multi-agent deep reinforcement learning based demand response for discrete manufacturing systems energy management," Applied Energy, Elsevier, vol. 276(C).
    20. Aras Ghafoor & Jamal Aldahmashi & Judith Apsley & Siniša Djurović & Xiandong Ma & Mohamed Benbouzid, 2024. "Intelligent Integration of Renewable Energy Resources Review: Generation and Grid Level Opportunities and Challenges," Energies, MDPI, vol. 17(17), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4096-:d:1458482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.