IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v375y2024ics0306261924015538.html
   My bibliography  Save this article

Safe deep reinforcement learning-assisted two-stage energy management for active power distribution networks with hydrogen fueling stations

Author

Listed:
  • Prabawa, Panggah
  • Choi, Dae-Hyun

Abstract

In a power-hydrogen coupled integrated energy system (PHCIES), hydrogen fueling stations (HFSs) with solar photovoltaic (PV) systems are crucial devices to support hydrogen demand and maintain a stable and near-zero pollutant emission-based PHCIES operation by producing a pollutant-free hydrogen. However, optimal operation management of HFSs is challenging because the electrolyzers, compressor, hydrogen storage system (HSS), and fuel cell in HFSs are interconnected and change dynamically under various operational environments. To resolve this issue, this paper presents a safe deep reinforcement learning (DRL)-assisted two-stage framework that ensures a reliable and economical PHCIES operation. In the first stage, day-ahead operational schedules of stand-alone PV systems, PV-enabled HFSs, on-load tap changers, and capacitor banks with hourly resolution are coordinated to minimize the system operation cost, electricity arbitrage cost, PV curtailment cost, and real power loss by solving a Volt-VAR control (VVC) optimization problem. In the second stage, a safe DRL algorithm with a 15-min resolution is employed to minimize the real power loss and maximize the HFS profit by rescheduling the reactive power of stand-alone PV systems and real/reactive power and hydrogen of HFSs. The proposed self-tuning adaptive safety module integrated in the DRL method ensures no violations of HSS’ state-of-hydrogen (SOH) and voltage magnitude in the PHCIES during the training process. Numerical examples conducted on a PHCIES (IEEE 33-bus system coupled with two PV-enabled HFSs) demonstrate the effectiveness of the proposed framework in terms of training convergence, SOH/voltage violation, real power loss, and profit of HFSs.

Suggested Citation

  • Prabawa, Panggah & Choi, Dae-Hyun, 2024. "Safe deep reinforcement learning-assisted two-stage energy management for active power distribution networks with hydrogen fueling stations," Applied Energy, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924015538
    DOI: 10.1016/j.apenergy.2024.124170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924015538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
    2. Gebbran, Daniel & Mhanna, Sleiman & Ma, Yiju & Chapman, Archie C. & Verbič, Gregor, 2021. "Fair coordination of distributed energy resources with Volt-Var control and PV curtailment," Applied Energy, Elsevier, vol. 286(C).
    3. Shi, Tao & Xu, Chang & Dong, Wenhao & Zhou, Hangyu & Bokhari, Awais & Klemeš, Jiří Jaromír & Han, Ning, 2023. "Research on energy management of hydrogen electric coupling system based on deep reinforcement learning," Energy, Elsevier, vol. 282(C).
    4. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    5. Yi, Zonggen & Luo, Yusheng & Westover, Tyler & Katikaneni, Sravya & Ponkiya, Binaka & Sah, Suba & Mahmud, Sadab & Raker, David & Javaid, Ahmad & Heben, Michael J. & Khanna, Raghav, 2022. "Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    6. Kou, Peng & Liang, Deliang & Wang, Chen & Wu, Zihao & Gao, Lin, 2020. "Safe deep reinforcement learning-based constrained optimal control scheme for active distribution networks," Applied Energy, Elsevier, vol. 264(C).
    7. Gao, Yuanqi & Yu, Nanpeng, 2022. "Model-augmented safe reinforcement learning for Volt-VAR control in power distribution networks," Applied Energy, Elsevier, vol. 313(C).
    8. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    2. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Sun, Zhiyuan & Feng, Jianbing & Xia, Weiyi, 2024. "A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data," Applied Energy, Elsevier, vol. 371(C).
    3. Chen, Yongdong & Liu, Youbo & Zhao, Junbo & Qiu, Gao & Yin, Hang & Li, Zhengbo, 2023. "Physical-assisted multi-agent graph reinforcement learning enabled fast voltage regulation for PV-rich active distribution network," Applied Energy, Elsevier, vol. 351(C).
    4. Zhong, Shangpeng & Wang, Xiaoming & Wu, Hongbin & He, Ye & Xu, Bin & Ding, Ming, 2024. "Energy hub management for integrated energy systems: A multi-objective optimization control strategy based on distributed output and energy conversion characteristics," Energy, Elsevier, vol. 306(C).
    5. Zhou, Yanting & Ma, Zhongjing & Shi, Xingyu & Zou, Suli, 2024. "Multi-agent optimal scheduling for integrated energy system considering the global carbon emission constraint," Energy, Elsevier, vol. 288(C).
    6. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    7. Carrilho-Nunes, Inês & Catalão-Lopes, Margarida, 2022. "The effects of environmental policy and technology transfer on GHG emissions: The case of Portugal," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 255-264.
    8. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    9. Degirmenci, Tunahan & Yavuz, Hakan, 2024. "Environmental taxes, R&D expenditures and renewable energy consumption in EU countries: Are fiscal instruments effective in the expansion of clean energy?," Energy, Elsevier, vol. 299(C).
    10. Oh, Seok Hwa & Yoon, Yong Tae & Kim, Seung Wan, 2020. "Online reconfiguration scheme of self-sufficient distribution network based on a reinforcement learning approach," Applied Energy, Elsevier, vol. 280(C).
    11. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    12. Tolliver, Clarence & Keeley, Alexander Ryota & Managi, Shunsuke, 2020. "Policy targets behind green bonds for renewable energy: Do climate commitments matter?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    13. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    14. Reinhard Madlener & Weiyu Gao & Ilja Neustadt & Peter Zweifel, 2008. "Promoting renewable electricity generation in imperfect markets: price vs. quantity policies," SOI - Working Papers 0809, Socioeconomic Institute - University of Zurich.
    15. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    16. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    17. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    18. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    19. Zhang, Tianhao & Dong, Zhe & Huang, Xiaojin, 2024. "Multi-objective optimization of thermal power and outlet steam temperature for a nuclear steam supply system with deep reinforcement learning," Energy, Elsevier, vol. 286(C).
    20. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:375:y:2024:i:c:s0306261924015538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.