IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3844-d1449858.html
   My bibliography  Save this article

On the Influence of Engine Compression Ratio on Diesel Engine Performance and Emission Fueled with Biodiesel Extracted from Waste Cooking Oil

Author

Listed:
  • Jasem Ghanem Alotaibi

    (Department of Automotive and Marine Engineering Technology, The Public Authority for Applied Education and Training, 3, 8XJM+C3M, 3, Shuwaikh Industrial, Kuwait City 70654, Kuwait)

  • Ayedh Eid Alajmi

    (Department of Automotive and Marine Engineering Technology, The Public Authority for Applied Education and Training, 3, 8XJM+C3M, 3, Shuwaikh Industrial, Kuwait City 70654, Kuwait)

  • Talal Alsaeed

    (Department of Manufacturing Engineering Technology, The Public Authority for Applied Education and Training, 3, 8XJM+C3M, 3, Shuwaikh Industrial, Kuwait City 70654, Kuwait)

  • Saddam H. Al-Lwayzy

    (School of Engineering, University Southern Queensland, Toowoomba, QLD 4350, Australia
    College of Project Management, Built Environment and Asset and Maintenance Management, CQUniversity Australia, Brisbane, QLD 4000, Australia)

  • Belal F. Yousif

    (School of Engineering, University Southern Queensland, Toowoomba, QLD 4350, Australia)

Abstract

Despite the extensive research on biodiesels, further investigation is warranted on the impact of compression ratios on emissions and engine performance. This study addresses this gap by evaluating the effects of increasing the engine’s compression ratio on engine performance metrics—brake-specific fuel consumption (BSFC), power, torque, and exhaust gas temperature—and emissions—unburnt hydrocarbons (HCs), carbon dioxide (CO 2 ), carbon monoxide (CO), nitrogen oxides (NO x ), and oxygen (O 2 )—when fueled with a 20% blend of waste cooking oil biodiesel (WCB20) and petroleum diesel (PD) under various operating conditions. The viscosity of the prepared fuels was measured at 25 °C and 40 °C. Experiments were conducted on a single-cylinder diesel engine under wide-open throttle conditions at three different speeds (1400 rpm, 2000 rpm, and 2600 rpm) and two compression ratios (16:1 and 18:1). The results revealed that at a lower compression ratio, both WCB20 and petroleum diesel exhibited reduced BSFC compared to higher compression ratios. However, increasing the compression ratio from 16:1 to 18:1 significantly decreased HC emissions but increased CO 2 and NO x emissions. Engine power increased with engine speed for both fuels and compression ratios, with WCB20 initially producing less power than diesel but surpassing it at higher compression ratios. WCB20 demonstrated improved combustion quality with lower unburnt hydrocarbons and carbon monoxide emissions due to its higher oxygen content, promoting complete combustion. This study provides critical insights into optimizing engine performance and emission characteristics by manipulating compression ratios and utilizing biodiesel blends, paving the way for more efficient and environmentally friendly diesel engine operations.

Suggested Citation

  • Jasem Ghanem Alotaibi & Ayedh Eid Alajmi & Talal Alsaeed & Saddam H. Al-Lwayzy & Belal F. Yousif, 2024. "On the Influence of Engine Compression Ratio on Diesel Engine Performance and Emission Fueled with Biodiesel Extracted from Waste Cooking Oil," Energies, MDPI, vol. 17(15), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3844-:d:1449858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-lwayzy, Saddam H. & Yusaf, Talal, 2017. "Diesel engine performance and exhaust gas emissions using Microalgae Chlorella protothecoides biodiesel," Renewable Energy, Elsevier, vol. 101(C), pages 690-701.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hao & Song, Chonglin & Lv, Gang & Pang, Huating & Qiao, Yuehan, 2017. "Assessment of the impact of post-injection on exhaust pollutants emitted from a diesel engine fueled with biodiesel," Renewable Energy, Elsevier, vol. 114(PB), pages 924-933.
    2. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    3. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    4. Resitoglu, Ibrahim Aslan, 2021. "The effect of biodiesel on activity of diesel oxidation catalyst and selective catalytic reduction catalysts in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Alçelik, Necdet & Sarıdemir, Suat & Polat, Fikret & Ağbulut, Ümit, 2024. "Role of hydrogen-enrichment for in-direct diesel engine behaviours fuelled with the diesel-waste biodiesel blends," Energy, Elsevier, vol. 302(C).
    6. Rajaeifar, Mohammad Ali & Tabatabaei, Meisam & Aghbashlo, Mortaza & Nizami, Abdul-Sattar & Heidrich, Oliver, 2019. "Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 276-292.
    7. Sujeet Kesharvani & Gaurav Dwivedi & Tikendra Nath Verma & Puneet Verma, 2022. "The Experimental Investigation of a Diesel Engine Using Ternary Blends of Algae Biodiesel, Ethanol and Diesel Fuels," Energies, MDPI, vol. 16(1), pages 1-18, December.
    8. Sattar Jabbar Murad Algayyim & Andrew P. Wandel, 2020. "Comparative Assessment of Spray Behavior, Combustion and Engine Performance of ABE-Biodiesel/Diesel as Fuel in DI Diesel Engine," Energies, MDPI, vol. 13(24), pages 1-12, December.
    9. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    10. Ağbulut, Ümit & Sarıdemir, Suat & Rajak, Upendra & Polat, Fikret & Afzal, Asif & Verma, Tikendra Nath, 2021. "Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics," Energy, Elsevier, vol. 229(C).
    11. Pedro Gerber Machado & Ana Carolina Rodrigues Teixeira & Flavia Mendes de Almeida Collaço & Adam Hawkes & Dominique Mouette, 2020. "Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil," Energies, MDPI, vol. 13(20), pages 1-26, October.
    12. Haq, Muteeb ul & Jafry, Ali Turab & Ahmad, Saad & Cheema, Taqi Ahmad & Kamran, Muhammad & Ajab, Huma & Masjuki, Haji Hassan, 2023. "Macroscopic spray behavior in pressurized chamber alongside thermal performance of quaternary castor biodiesel with butanol and 1-butoxybutane," Energy, Elsevier, vol. 282(C).
    13. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    14. Amit Kumar Sharma & Pankaj Kumar Sharma & Venkateswarlu Chintala & Narayan Khatri & Alok Patel, 2020. "Environment-Friendly Biodiesel/Diesel Blends for Improving the Exhaust Emission and Engine Performance to Reduce the Pollutants Emitted from Transportation Fleets," IJERPH, MDPI, vol. 17(11), pages 1-18, May.
    15. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    16. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Characteristics of microalgae spirulina biodiesel with the impact of n-butanol addition on a CI engine," Energy, Elsevier, vol. 189(C).
    17. Islam, Muhammad Aminul & Heimann, Kirsten & Brown, Richard J., 2017. "Microalgae biodiesel: Current status and future needs for engine performance and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1160-1170.
    18. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Assessment of diesel engine performance using spirulina microalgae biodiesel," Energy, Elsevier, vol. 166(C), pages 1025-1036.
    19. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    20. Flávia Mendes de Almeida Collaço & Ana Carolina Rodrigues Teixeira & Pedro Gerber Machado & Raquel Rocha Borges & Thiago Luis Felipe Brito & Dominique Mouette, 2022. "Road Freight Transport Literature and the Achievements of the Sustainable Development Goals—A Systematic Review," Sustainability, MDPI, vol. 14(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3844-:d:1449858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.